
FORMAL METHODS SPECIFICATION AND ANALYSIS GUIDEBOOK

FOR THE VERIFICATION OF SOFTWARE AND

COMPUTER SYSTEMS

VOLUME II: A PRACTITIONER'S COMPANION

FOREWORD

This volume presents technical issues involved in applying mathematical techniques
known as Formal Methods to specify and analytically verify aerospace and avionics soft-
ware systems. The �rst volume in this two-part series, NASA-GB-002-95 [NASA-95a],
dealt with planning and technology insertion. This second volume discusses practical
techniques and strategies for verifying requirements and high-level designs for software
intensive systems. The discussion is illustrated with a realistic example based on NASA's
Simpli�ed Aid for EVA (Extravehicular Activity) Rescue [SAFER94a,SAFER94b]. The
volume is intended as a \companion" and guide for the novice formal methods and ana-
lytical veri�cation practitioner. Together, the two volumes address the recognized need
for new technologies and improved techniques to meet the demands inherent in devel-
oping increasingly complex and autonomous systems. The support of NASA's Safety
and Mission Quality O�ce for the investigation of formal methods and analytical ver-
i�cation techniques re
ects the growing practicality of these approaches for enhancing
the quality of aerospace and avionics applications.

Both volumes of the guidebook are electronically available at JPL via the
URL http://eis.jpl.nasa.gov/quality/Formal Methods/. PVS source �les for the
SAFER example are available on LaRC's Web server in the directory ftp://atb-
www.larc.nasa.gov/Guidebooks/.

Major contributors to the guidebook include Judith Crow, lead author (SRI Interna-
tional); Ben Di Vito, SAFER example author (V�iGYAN); Robyn Lutz (NASA - JPL);
Larry Roberts (Lockheed Martin Space Mission Systems and Services); Martin Feather
(NASA - JPL); and John Kelly (NASA - JPL), task lead. Special thanks go to John
Rushby (SRI International) who provided valuable material and guidance, Sam Owre
(SRI International) who graciously supplied wide-ranging technical expertise, Gerard
Holzmann (Lucent Technologies) and Peter Gorm Larsen (IFAD) both of whom gave
particularly thorough and thoughtful reviews, and Valerie Mathews (NASA - JPL) who
served as guidebook review and publication coordinator. Special acknowledgment is
also extended to NASA sponsors Kathryn Kemp (Deputy Director, NASA IV&V Facil-
ity), George Sabolish (NASA - Ames), Rick Butler (NASA - Langley), and Ernie Fridge
(NASA - Johnson).

This document is a product of NASA's Software Program, an agency-wide program
that promotes continual improvement in software engineering and assurance within
NASA. The goals and strategies of this program are documented in the NASA Software
Strategic Plan [NASA-95b]. Funding for this guidebook was provided by NASA's O�ce
of Safety and Mission Assurance. Additional information about this program and its
products is available via the World Wide Web at http://www.ivv.nasa.gov.

iii

iv

Contents

1 Introduction 1

2 The Practical Application of Formal Methods 5

2.1 What Are Formal Methods? . 5

2.2 Roles of Formal Methods . 6

2.3 Formal Methods: Degree of Formalization and Scope of Use 6

2.3.1 Levels of Formalization . 7

2.3.2 Scope of Formal Methods Use . 8

2.4 Reasonable Expectations for Formal Methods 9

2.5 The Method Underlying Formal Methods 10

2.6 An Introduction to SAFER . 13

3 Requirements 19

3.1 Requirements and Formal Methods . 20

3.1.1 Impact of Requirements Speci�cation on Formal Methods 20

3.1.1.1 Level of Requirements Capture 20

3.1.1.2 Explicitness of Requirements Statement 20

3.1.1.3 Clarity of Delineation between a System and Its Envi-
ronment . 20

3.1.1.4 Traceability of Requirements 21

3.1.1.5 Availability of Underlying Rationale and Intuition . . . 21

3.1.2 Impact of Formal Methods on Requirements 22

3.2 Conventional Approaches to Requirements Validation 23

3.3 SAFER Requirements . 25

4 Models 27

4.1 Mathematical Models . 27

4.1.1 Characteristics of Mathematical Models 28

4.1.1.1 Abstraction . 28

4.1.1.2 Focus . 29

4.1.1.3 Expressiveness Versus Analytic Power 29

4.1.1.4 Intuitive Versus Nonintuitive Representation 29

v

vi Table of Contents

4.1.1.5 Accuracy . 30
4.1.2 Bene�ts of Mathematical Models 30
4.1.3 Mathematical Models for Discrete and Continuous Domains . . . 31

4.2 Continuous Domain Modeling . 32
4.3 Discrete Domain Modeling . 33

4.3.1 Functional Models . 34
4.3.2 Abstract State Machine Models 36

4.3.3 Automata-Based Models . 39
4.3.3.1 �-Automata . 39
4.3.3.2 !-Automata . 39
4.3.3.3 Timed Automata . 40
4.3.3.4 Hybrid Automata . 40

4.3.4 Object-Oriented Models . 41

4.4 A Model for the SAFER Avionics Controller 46

5 Formal Speci�cation 53

5.1 Formal Speci�cation Languages . 54
5.1.1 Foundations . 54
5.1.2 Features . 56

5.1.2.1 Explicit Semantics . 57
5.1.2.2 Expressiveness . 57
5.1.2.3 Programming Language Datatypes and Constructions . 57
5.1.2.4 Convenient Syntax . 58
5.1.2.5 Diagrammatic Notation 58
5.1.2.6 Strong Typing . 58
5.1.2.7 Total versus Partial Functions 59

5.1.2.8 Re�nement . 60
5.1.2.9 Introduction of Axioms and De�nitions 60
5.1.2.10 Encapsulation Mechanism 62
5.1.2.11 Built-in Model of Computation 63
5.1.2.12 Executability . 63
5.1.2.13 Maturity . 63

5.2 Formal Speci�cation Styles . 63
5.3 Formal Speci�cation and Life Cycle . 65
5.4 The Detection of Errors in Formal Speci�cation 66
5.5 The Utility of Formal Speci�cation . 68
5.6 A Partial SAFER Speci�cation . 71

6 Formal Analysis 79

6.1 Automated Deduction . 79
6.1.1 Background: Formal Systems and Their Models 80

6.1.1.1 Proof Theory . 80
6.1.1.2 Model Theory . 82

NASA-GB-001-97 vii

6.1.1.3 An Example of a First-Order Theory 83

6.1.2 A Brief History of Automated Proof 84

6.1.3 Techniques Underlying Automated Reasoning 87

6.1.3.1 Calculi for First-Order Predicate Logic 87

6.1.3.1.1 Normal Forms 87

6.1.3.1.2 The Sequent Calculus 88

6.1.3.1.3 The Resolution Calculus 93

6.1.3.2 Extending the Predicate Calculus 94

6.1.3.2.1 Reasoning about Equality 94

6.1.3.2.2 Reasoning about Arithmetic 96

6.1.3.2.3 Combining First-Order Theories 97

6.1.3.3 Mechanization of Proof in the Sequent Calculus 97

6.1.4 Utility of Automated Deduction 102

6.2 Finite-State Methods . 103

6.2.1 Background . 103

6.2.1.1 Temporal Logic . 104

6.2.1.2 Linear Temporal Logic (LTL) 106

6.2.1.3 Branching Time Temporal Logic 106

6.2.1.4 Fixed Points . 109

6.2.1.5 The Mu-Calculus . 110

6.2.2 A Brief History of Finite-State Methods 111

6.2.3 Approaches to Finite-State Veri�cation 113

6.2.3.1 The Symbolic Model Checking Approach 113

6.2.3.2 The Automata-Theoretic Approach 116

6.2.3.2.1 Language Containment 116

6.2.3.2.2 State Exploration 117

6.2.3.2.3 Bisimulation Equivalence and Prebisimulation
Preorders . 119

6.2.4 Utility of Finite-State Methods 120

6.3 Direct Execution, Simulation, and Animation 120

6.3.1 Observational Techniques . 121

6.3.2 Utility of Observational Techniques 122

6.4 Integrating Automated Analysis Methods 123

6.5 Proof of Selected SAFER Property . 123

6.5.1 The PVS Theory SAFER properties 124

6.5.2 Informal Argument for Lemma max thrusters sel 127

7 Conclusion 131

7.1 Factors In
uencing the Use of Formal Methods 131

7.2 The Process of Formal Methods . 132

7.3 Pairing Formal Methods, Strategy, and Task 133

viii Table of Contents

7.4 Formal Methods and Existing Quality Control and
Assurance Activities . 134

7.5 Formal Methods: Veri�cation Versus Validation and Exploration 135

References 137

A Glossary of Key Terms 167

A.1 Acronyms . 167

A.2 Terms . 168

B Further Reading 171

B.1 Technical Background: Mathematical Logic 171

B.2 Speci�cation . 172

B.3 Model Checking . 172

B.4 Theorem Proving . 173

B.5 Models of Computation . 173

B.6 Applications and Overviews . 173

B.7 Tutorials . 174

C Extended Example: Simpli�ed Aid for EVA Rescue (SAFER) 177

C.1 Overview of SAFER . 177

C.1.1 History, Mission Context, and System Description 177

C.1.2 Principal Hardware Components 179

C.1.2.1 Backpack Propulsion Module 179

C.1.2.2 Hand Controller Module (HCM) 179

C.1.2.3 Battery Pack . 181

C.1.2.4 Flight Support Equipment 181

C.1.3 Avionics . 181

C.1.4 System Software . 182

C.1.4.1 Software Interfaces . 182

C.1.4.2 Maneuvering Control Subsystem 184

C.1.4.3 Fault Detection Subsystem 185

C.2 SAFER EVA Flight Operation Requirements 188

C.2.1 Hand Controller Module (HCM) 188

C.2.1.1 Display and Control Unit (DCU) 188

C.2.1.2 Hand Controller Unit (HCU) 189

C.2.2 Propulsion Subsystem . 190

C.2.3 Avionics Assemblies . 190

C.2.3.1 Inertial Reference Unit (IRU) 190

C.2.3.2 Power Supply Assembly (PSA) 190

C.2.3.3 Data Recorder Assembly (DRA) 191

C.2.4 Avionics Software . 191

C.2.5 Avionics Software Interfaces . 192

NASA-GB-001-97 ix

C.3 Formalization of SAFER Requirements 193
C.3.1 PVS Language Features . 194
C.3.2 Overview of Formalization . 195

C.3.2.1 Basic Types . 196
C.3.2.2 Hand Controller Module 197
C.3.2.3 Propulsion Module . 197
C.3.2.4 Automatic Attitude Hold 197
C.3.2.5 Thruster Selection . 197
C.3.2.6 Avionics Model . 198

C.3.3 Full Text of PVS Theories . 198
C.4 Analysis of SAFER . 219

C.4.1 Formulating System Properties 219
C.4.1.1 Formalization of the Maximum Thruster Property . . . 220
C.4.1.2 PVS Theory for Maximum Thruster Property 220

C.4.2 Proving System Properties . 222
C.4.2.1 Proof Sketch of the Maximum Thruster Property . . . 223
C.4.2.2 PVS Proof of Maximum Thruster Property 225

x Table of Contents

List of Figures

2.1 The Range of Formal Methods Options Summarized in Terms of (a) Lev-
els of Formalization and (b) Scope of Formal Methods Use. 7

2.2 Mechanical Support for Speci�cation and Analysis Phases of FM. 13
2.3 Front and back views of SAFER system worn by NASA crewmember. . 14

4.1 Implementation of a Full Adder. 36
4.2 Abstract State Machine Model. 36
4.3 A-7 Model of a Simple Control System. 37
4.4 State-Update and Actuator Functions within Control System. 38
4.5 Object Model of Cassini Generic Fault Protection Monitor. 42
4.6 Functional Model of Cassini Generic Fault Protection Monitor. 43
4.7 Dynamic Model of Cassini Generic Fault Protection Monitor. 44
4.8 AAH Control System State-Update and Actuator Functions. 50
4.9 Labeled AAH Pushbutton State Transition Diagram. 51

6.1 Burch et al.'s Mu-Calculus Model Checking Algorithm. 114
6.2 A Simple SMV Program [McM93, p. 63]. 115
6.3 Dependency Hierarchy for SAFER properties. 128
6.4 Proof Tree for SAFER properties max thrusters sel. 129
6.5 Revised Proof Tree for SAFER properties max thrusters sel. 130

C.1 SAFER use by an EVA crewmember. 227
C.2 Propulsion module structure and mechanisms. 228
C.3 SAFER thrusters and axes. 229
C.4 Hand controller module. 230
C.5 Hand controller translational axes. 231
C.6 Hand controller rotational axes. 232
C.7 SAFER system software architecture. 233
C.8 AAH pushbutton state diagram. 234

xi

xii

List of Tables

C.1 SAFER sensor complement. 183
C.2 Thruster select logic for X, pitch, and yaw commands. 186
C.3 Thruster select logic for Y, Z, and roll commands. 187

xiii

xiv

Chapter 1

Introduction

This guidebook, the second of a two-volume series, is intended to facilitate the transfer of
formal methods to the avionics and aerospace community. The �rst volume concentrates
on administrative and planning issues [NASA-95a], and the second volume focuses on the
technical issues involved in applying formal methods to avionics and aerospace software
systems. Hereafter, the term \guidebook" refers exclusively to the second volume of
the series. The title of this second volume, A Practitioner's Companion, conveys its
intent. The guidebook is written primarily for the nonexpert and requires little or no
prior experience with formal methods techniques and tools. However, it does attempt
to distill some of the more subtle ingredients in the productive application of formal
methods. To the extent that it succeeds, those conversant with formal methods will
also �nd the guidebook useful. The discussion is illustrated through the development
of a realistic example, relevant fragments of which appear in each chapter.

The guidebook focuses primarily on the use of formal methods for analysis of require-
ments and high-level design, the stages at which formal methods have been most produc-
tively applied. Although much of the discussion applies to low-level design and imple-
mentation, the guidebook does not discuss issues involved in the later life cycle applica-
tion of formal methods. The example provided in the guidebook is based on the control
function for the Simpli�ed Aid for EVA (Extravehicular Activity) Rescue [SAFER94a,
SAFER94b], hereafter referred to as SAFER1, which has been speci�ed and analyzed
using the PVS speci�cation language and interactive proof checker [ORSvH95]. PVS
has been selected because it has been successfully used on NASA projects, includ-
ing [LR93a,NASA93,LA94,Min95,BCC+95,HCL95,SM95b,DR96,ML96], and because
it is representative of a class of tools that o�ers a formal speci�cation language in a
comprehensive environment, including automated proof support. In formalizing the

1SAFER is a descendent of the Manned Maneuvering Unit (MMU) [MMU83]. The main di�erence

between SAFER and the MMU is that SAFER is a small, lightweight, \simpli�ed" single-string system

for contingency use (self-rescue) only, whereas the MMU is a larger, bulkier, but extremely versatile

EVA maneuvering device. The application of formal methods to SAFER is limited to the example in

this guidebook; formal methods have not been used to support SAFER development or maintenance.

1

2 Chapter 1

SAFER example, the priorities have been readability and portability to other formal
methods paradigms. Consequently, the discussion is framed in general terms applicable
to most formal methods strategies and techniques.

The guidebook is not a tutorial on formal methods; it does not provide a grounding
in mathematical logic or formal speci�cation and veri�cation, although the appendices
contain references that provide technical background, as well as a glossary of key terms.
Nor is it a formal methods cookbook; there are no recipes that detail the step-by-step
preparation of a formal methods product. Furthermore, the guidebook assumes that
the reader is aware of the potential bene�ts and fallibilities of formal methods; it does
not dwell on the very real bene�ts of the appropriate application of formal methods or
the equally real pitfalls of misuse.

The guidebook does contain a fairly detailed account of the technical issues involved
in applying formal methods to avionics and aerospace software systems, including a
well-developed example. In order of presentation, the topics covered in the guidebook
include requirements, models, formal speci�cation, and formal analysis. However, the
application of formal methods is not an essentially linear process. Formal methods are
most productive when they are integrated with existing life cycle processes, and when
they use an iterative strategy that successively re�nes and validates the formalization,
the requirements, the design, and if desired, critical parts of the implementation.

This guidebook is organized as follows: Chapter 2 reviews technical considerations
relevant to projects considering the use of formal methods, touching brie
y on general
elements of the somewhat elusive method underlying formal methods. This chapter also
provides background material on the SAFER example developed in subsequent chapters.
Chapter 3 examines the notion of requirements from a formal methods perspective and
introduces selected requirements for the ongoing SAFER example. The concept of
models and a survey of modeling strategies are introduced in Chapter 4, along with a
formal model for a SAFER subsystem. A fragment of the speci�cation for the SAFER
requirements introduced in Chapter 3 is developed using the model de�ned in Chapter 4.
Chapter 5 provides a discussion of formal speci�cation, including topics ranging from
speci�cation languages, paradigms, and strategies, to type consistency of speci�cations.
Again, a discussion of the pertinent step in the development of the SAFER example
appears at the end of the chapter. Chapter 6 considers techniques and tools for formal
analysis, including such topics as the role of formal proof, the impact of speci�cation
strategy on formal analysis, and the utility of various analysis strategies. A discussion
of formal analysis of key properties of the SAFER speci�cation appears at the end of the
chapter. Following concluding remarks in Chapter 7 are three appendices: Appendix A
contains a glossary of key terms and concepts, Appendix B lists material for further
reading, and Appendix C o�ers an extended discussion of the complete SAFER example.

There are several ways to use this guidebook. The heart of the discussion appears in
Chapters 4, 5, and 6. Readers new to formal methods may want to concentrate on these
key chapters, along with the �rst three chapters and the conclusion, possibly skipping
Chapter 6 the �rst time through. In most cases, historical observations and more

NASA-GB-001-97 3

technical material are bracketed with the \dangerous bend" signs: �. . . � .2 More

experienced practitioners may want to focus on Chapters 5 and 6, or skip directly to
the full treatment of the example in Appendix C. The SAFER example that concludes
each chapter should be used to further clarify the discussion as the reader proceeds,
rather than saved as a �nale at the end of the chapter.

2The \dangerous bend" icon was introduced by Knuth [Knu86].

4 Chapter 1

Chapter 2

The Practical Application of

Formal Methods

The practical application of formal methods typically occurs within the context of a
project and, possibly, within a broader context dictated by institutionalized conventions
or criteria. These contexts determine the role of formal methods and the dimensions
of its use. This chapter contains a review of these contextual factors, including a brief
overview of the formal methods process. The discussion moves from the explicitly formal
nature of formal methods to the more elusivemethods implied in its use. The chapter also
provides su�cient background information on SAFER to clarify and motivate pertinent
aspects of the formalization and analysis of SAFER that illustrate the discussions in
each of the subsequent chapters.

2.1 What Are Formal Methods?

The term Formal Methods refers to the use of techniques from logic and discrete mathe-
matics in the speci�cation, design, and construction of computer systems and software.
The word \formal" derives from formal logic and means \pertaining to the structural
relationship (i.e., form) between elements." Formal logic refers to methods of reasoning
that are valid by virtue of their form and independent of their content. These meth-
ods rely on a discipline that requires the explicit enumeration of all assumptions and
reasoning steps. In addition, each reasoning step must be an instance of a relatively
small number of allowed rules of inference. The most rigorous formal methods apply
these techniques to substantiate the reasoning used to justify the requirements, or other
aspects of the design or implementation of a complex or critical system. In formal logic,
as well as formal methods, the objective is the same: reduce reliance on human intuition
and judgment in evaluating arguments. That is, reduce the acceptability of an argu-
ment to a calculation that can, in principle, be checked mechanically, thereby replacing

5

6 Chapter 2

the inherent subjectivity of the review process with a repeatable exercise. Less rigorous
formal methods1 tend to emphasize the formalization and forego the calculation.

This de�nition implies a broad spectrum of formal methods techniques, as well as a
similarly wide range of formal methods strategies2. The interaction of the techniques
and strategies yields many formal methods options, constrained, for any given project,
by the role of formal methods and the resources available for its application. The roles
of formal methods are discussed in the following section. An evaluation of resources as a
factor shaping formal methods can be found in Volume I of this Guidebook [NASA-95a].3

The purpose of the next few sections is to emphasize the versatility of formal methods
and the importance of customizing the use of formal methods to the application.

2.2 Roles of Formal Methods

As noted above, formal methods may be used to calculate. For example, a formal
method may be used to determine whether a certain description is internally consistent,
whether certain properties are consequences of proposed requirements, whether one level
of design implements another, or whether one design is preferable to another. In such
cases, the focus of formal methods use is largely analytical. Formal methods may also
have a primarily descriptive focus, for example, to clarify or document requirements
or high-level design, or to facilitate communication of a requirement or design during
inspections or reviews. Each use re
ects a particular formal methods role. Formal
methods may also be used to satisfy standards or to provide assurance or certi�cation
data, in which case the role of formal methods, as well as the analytic or descriptive
content of the formal methods product, is prescribed.

The intended role or roles speci�ed for a particular application of formal methods
serves to constrain the set of techniques and strategies appropriate for that project.

2.3 Formal Methods: Degree of Formalization and Scope

of Use

Formal methods options may be classi�ed in terms of techniques that are di�erentiated
by degree or level of formalization (Figure 2.1(a)), and strategies that are characterized
by the scope of formal methods use (Figure 2.1(b)). Level of formalization and scope
of use are independent factors that combine to determine the range of formal methods
options, hence their juxtaposition in Figure 2.1.

1Or, equivalently, the use of a rigorous formal method at a lower level of rigor. The extent of

formalization and level of rigor are discussed in Section 2.3.
2As used here and throughout the remainder of the guidebook, \formal methods strategies" refer to

strategems for productively employing the mathematical techniques that comprise formal methods.
3The material in the following sections re
ects the type of technical issues typically raised in a general

discussion of formal methods use. More complete exploration of these and related topics can be found,

for example, in [Rus93a,BS93,HB95b].

NASA-GB-001-97 7

Levels of Formalization Scope of FM Use

1. Mathematical concepts and notation, Life cycle phases:
informal analysis (if any), no mechanization all/selected
2. Formalized speci�cation languages, System components:
some mechanized support all/selected
3. Formal speci�cation languages, System functionality:
comprehensive environment, including full/selected
automated proof checker/theorem prover

Figure 2.1: The Range of Formal Methods Options Summarized in Terms of (a) Levels
of Formalization and (b) Scope of Formal Methods Use.

2.3.1 Levels of Formalization

Formal methods techniques may be de�ned at varying levels, re
ecting the extent to
which a technique formulates speci�cations in a language with a well-de�ned semantics,
explicitly enumerates all assumptions, and reduces proofs to applications of well-de�ned
rules of inference. Increasing the degree of formality allows speci�cations and assump-
tions to be less dependent on subjective reviews and consensus and more amenable to
systematic analysis and replication. There is a distinction to be drawn between the
terms rigor and formality; it is possible to be rigorous, that is, painstakingly serious
and careful, without being truly formal in the mathematical sense. Since it is di�cult
to use a high degree of formality with pencil and paper [RvH93], increasing formality is
associated here with increasing dependence on computer support.

As techniques mature and acquire automated support, their level of formalization
typically changes. The evolution of the A-7 or Software Cost Reduction (SCR) method-
ology illustrates this process. In the late 1970s, Parnas, Heninger, and colleagues at the
Naval Research Laboratory (NRL) de�ned a tabular method to specify software system
requirements [H+78]. Van Schouwen subsequently formalized the methodology and its
underlying mathematical model [vS90]. Researchers at NRL have continued to work
on the SCR methodology, re�ning the model, providing a formal semantics, developing
automated tools including consistency and completeness checkers, and, most recently,
exploiting extant model checkers and theorem provers [HBGL95,BH97,AH97].

The levels of formalization are de�ned below, listed in order of increasing formality
and e�ort. The purpose of this classi�cation is to identify broad classes of formal
methods. The distinctions underlying the classi�cation are neither hard and fast, nor a
measure of the inherent merit or mathematical sophistication of a technique. Instead,
the distinctions re
ect the extent to which a technique is both mathematically well-
de�ned and supported by mechanized tools, yielding systematic analyses and replicable
results.

8 Chapter 2

1. The use of notations and concepts derived from logic and discrete math to de-
velop more precise requirements statements and speci�cations. Analysis, if any,
is informal. This level of formal methods typically augments existing processes
without imposing wholesale revisions. Examples include early formulations of the
A-7 methodology [H+78,Hen80,vS90], various case- and object-oriented modeling
techniques [Boo91,CY91b,CY91a,RBP+91, Sys92], and Mills and Dyer's Clean-
room methodology [Mil93, Lin94], although the latter is an exception in that it
supplants rather than augments existing processes.

2. The use of formalized speci�cation languages with mechanized support tools
ranging from syntax checkers and prettyprinters to typecheckers, interpreters,
and animators. This level of formality usually includes support for modern
software engineering constructs with explicit interfaces, for example, modules,
abstract data types, and objects. Historically, tools at this level haven't of-
fered mechanized theorem proving, although recent evolution of the following
tools has increased their support for mechanized proof: Larch [wSJGJMW93],
RAISE [Gro92], SDL [BHS91], VDM [Jon90], Z [Spi88,Wor92] and SCR [FC87,
HJL95,HLK95,HBGL95].

3. The use of formal speci�cation languages with rigorous semantics and corre-
spondingly formal proof methods that support mechanization. Examples in-
clude HOL [GM93], Nqthm [BM88], ACL2 [KM96], EVES [CKM+91], and
PVS [ORSvH95]. State exploration [Hol91, ID93], model checking [McM93], and
language inclusion [Kur94] techniques also exemplify this level, although these
technologies use highly specialized, automatic theorem provers that are limited to
checking properties of �nite-state systems or of in�nite-state systems with certain
structural regularities.

One of the maxims of this guidebook is the importance of tailoring the use of formal
methods to the task. In this case, the maxim implies that higher levels of rigor are
not necessarily superior to lower levels. The highest level of formality may not be the
most appropriate or productive for a given application. A project that intends using
formal methods primarily to document the emerging requirements for a new system
component would make very di�erent choices than if they were formally verifying key
properties of an inherently di�cult algorithm for a distributed protocol. Implicit in the
discussion is the importance of selecting a formal methods tool appropriate to the task.
A full discussion of factors in
uencing tool selection can be found in [Rus93a], and a
summary is available in Volume I of this guidebook [NASA-95a].

2.3.2 Scope of Formal Methods Use

The three most commonly used variations in the scope of formal methods application
are listed here; others are certainly possible.

NASA-GB-001-97 9

1. Stages of the development life cycle
Generally, the biggest payo� from formal methods use occurs in the early life cycle
stages, given that errors cost more to correct as they proceed undetected through
the development stages; early detection leads to lower life cycle costs. Moreover,
formal methods use in the early stages provides precision precisely where it is
lacking in conventional development methods.

2. System components

Criticality assessments, assurance considerations, and architectural characteristics
are among the key factors used to determine which subsystems or components
to analyze with formal methods. Since large systems are typically composed of
components with widely di�ering criticalities, the extent of formal methods use
should be dictated by project-speci�c criteria. For example, a system architecture
that provides fault containment for a critical component through physical or logical
partitioning provides an obvious focus for formal methods activity and enhances
its ability to assure key system properties.

3. System functionality

Although formal methods have traditionally been associated with \proof of cor-
rectness," that is, ensuring that a system component meets its functional speci-
�cation, they can also be applied to only the most important system properties.
Moreover, in some cases it is more important to ensure that a component does
not exhibit certain negative properties or failures, rather than to prove that it has
certain positive properties, including full functionality.

2.4 Reasonable Expectations for Formal Methods

A formal method is neither a panacea, nor a guarantee of a superior product. Realistic
expectations are a function of the designated role(s) and extent of formal methods use
and of the project resources allocated to the formal methods activity. Judicious, skill-
ful application of formal methods can detect faults earlier than standard development
processes, thereby greatly reducing the incidence of mistakes in interpreting, formal-
izing, and implementing correct requirements and high-level designs. Because formal
methods encourage a systematic enumeration and exploration of cases, they encourage
the early discovery of faults in requirements or high-level designs that would otherwise
be discovered only during programming. Of course, the same claim can be made for
pseudocode, data
ow diagrams, or other quasi-formal notations that can be used early
in the life cycle.

The advantage of formal methods is that by concentrating on what is required, they
focus more directly on the topic of interest and avoid the distractions entailed by im-
plementation factors. Stronger claims can even be made for fully formal techniques.
Equally judicious, skillful applications of the most rigorous formal methods can detect
more faults than would otherwise be the case and, in certain circumstances, subject

10 Chapter 2

to certain caveats, they can also guarantee the absence of certain faults. In particu-
lar, by working early in the life cycle, on reasonably abstracted representations of the
hardest part(s) of the overall problem, the highest-level formal methods can validate
crucial elements of the requirements or high-level design. Finally, in contrast to such
techniques as direct execution, prototyping, and simulation, which can explore a large,
but necessarily incomplete set of system behaviors, deductive formal methods and state
exploration techniques support exhaustive examination of all behaviors.4 The extent
to which a project realizes some or all of the bene�ts described here depends on the
availability of essential resources, the skill with which formal methods use is tailored
to the application, and the degree to which the expectations �t the dimensions of the
project.

2.5 The Method Underlying Formal Methods

In the context of an engineering discipline, a method describes the way in

which a process is to be conducted. In the context of system engineering, a

method is de�ned to consist of (1) an underlying model of development, (2)

a language, or languages, (3) de�ned, ordered steps, and (4) guidance for

applying these in a coherent manner.

Most so-called formal methods do not address all of these is-

sues.. . . Indeed, the formal methods community has been slow to address such

methodological aspects.5 [HB95b, p. 2]

Although the four elements in the preceding de�nition may be somewhat controver-
sial, the observation that there is a paucity of method in formal methods is not. The
observation focuses in particular on the apparent absence of \de�ned, ordered steps"
and \guidance" in applying those methodical elements that have been identi�ed. One
reason for the absence of method is that the intellectual discipline involved in modeling,
speci�cation, and veri�cation eludes simple characterization; the intuition that guides
e�ective abstraction, succinct speci�cation, and adroit proof derives from skill, talent,
and experience and is di�cult to articulate as a process.

Exceptions to this observation include specialized methodologies for particular ap-
plication areas, such as the area of embedded systems | reactive systems that oper-
ate continuously and interact with their environment, including Parnas's \four vari-
able method" [vS90, vSPM93], NRL's Software Cost Reduction (SCR) method [FC87,
HBGL95], the Software Productivity Consortium's Requirements Engineering (CoRE)
method [FBWK92], and Harel's Statecharts [Har87, H+90] and its derivatives, such
as Leveson's Requirements State Machine Language (RSML) [LHHR94]. Historically,

4State exploration techniques require a \downscaled" or �nite state version of the system and typ-

ically involve a more concrete representation than that used with theorem provers or proof checkers.

These and related topics are discussed in Chapter 6.
5The material quoted here is based on a discussion in [Kro93].

NASA-GB-001-97 11

the methods developed for reactive systems have provided organizing principles, con-
ceptual models, and in many cases, speci�cation languages, and systematic checks for
well-formedness of speci�cations. Although many of these methodologies provide some
mechanized analysis and are currently exploring additional mechanized checks, few have
yet to provide the range of analysis available in a true theorem prover or proof checker.

Although the method implied in formal methods has been slow to emerge (with the
exception of the methodologies noted above), broad outlines that e�ectively constitute
an \underlying model of development" are worth noting. The process of applying formal
methods to a chosen application typically involves the following phases: characterizing
the application, modeling6, speci�cation, analysis (validation), and documentation. The
distinction between phases is somewhat arti�cial and should not be taken too literally.
For example, it is di�cult and not particularly instructive to determine precisely where
modeling ends and speci�cation begins. Each phase consists of constituent processes.
Again, the enumeration below is suggested, not prescribed, and the overall process (i.e.,
the four constituent phases) is iterative rather than sequential. For example, character-
ization of the application may be in
uenced by consideration of potential models, the
process of specifying the application may suggest changes to the underlying model, or
the process of verifying a key property may trigger changes to the speci�cation or even to
the underlying model. Ideally, documentation accompanies all the phases summarized
here:

� The Characterization Phase: Synthesize a thorough understanding of the appli-
cation and the application domain.

{ Conduct a thorough study of the application, noting key components and sub-
components, interfaces, essential algorithms, fundamental behaviors (nomi-
nal and o�-nominal), data and control
ows, and operational environment.

{ Identify and study related work, if any.

{ Acquire additional knowledge of the application domain, as needed.

{ Integrate the accumulated knowledge into a working characterization of the
application. Some practitioners, especially those working alone, tend to \in-
ternalize" an application, working strictly from mental notes. Other practi-
tioners produce working documents and notes. The culture in which a project
operates in large part determines the artifacts (if any) of this phase. Still,
the importance of this phase should not be underestimated; total immersion
in an application is crucial for developing insight into the most appropriate
models and the most appropriate speci�cation and validation strategies. In
some cases, such as hardware veri�cation, there is considerable precedent
and there are fairly well-established paradigms. There is also a standard

6As used here, the term \model" refers to the mathematical representation of a system that underlies

the system's speci�cation. In this usage, the \models" checked by state exploration tools or model

checkers are viewed as speci�cations.

12 Chapter 2

paradigm for proving hierarchical speci�cation chains, that is, hierarchies of
speci�cations at di�erent levels of abstraction (see Section 5.3). However, in
most other cases, there is often little applicable precedent and there are few,
if any, established paradigms.

� The Modeling Phase: De�ne a mathematical representation suitable for formaliz-
ing the application domain and for calculating and predicting the behavior of the
application in that context. (See Chapter 4.)

{ Evaluate potential mathematical representations, considering such general
factors as the level of abstraction, generality, expressiveness, analytical power,
and simplicity, as well as speci�c factors, such as the computational model,
and explicit (implicit) representation of state and time. Mechanized tool
support, if any, may also be a factor. The logic underlying a tool may
support the use of certain mathematical representations and discourage the
use of others.

{ Select the mathematical representation most suitable for the application.

{ Model key elements of the application and their relationships. As noted
above, this (sub)process transitions into the speci�cation phase.

� The Speci�cation Phase: Formalize relevant aspects of the application and its
operational environment. (See Chapter 5.)

{ Develop a speci�cation strategy, considering such factors as hierarchical (mul-
tilevel) versus single-level speci�cation, constructive versus descriptive spec-
i�cation style (see Section 5.2), and procedural and organizational issues,
such as developing reusable theories and common de�nitions, and speci�ca-
tion chronology.

{ Using the chosen model and speci�cation strategy, compose the speci�cation.

{ Analyze the syntactic and semantic correctness of the speci�cation.

� The Analysis Phase: Validate the speci�cation. (See Chapter 6.)

{ Interpret or execute the speci�cation.

{ Prove key properties and invariants.

{ Establish the consistency of axioms, if any.

{ Establish the correctness of hierarchical layers, if any.

� The Documentation Phase: Record operative assumptions, motivate critical deci-
sions, document the rationale and crucial insights, provide explanatory material,
trace speci�cation to requirements (high-level design), track level of e�ort, and
where relevant, collect cost/bene�t data.

NASA-GB-001-97 13

� Maintenance and Generalization: Revisit and modify the speci�cation and its
analysis as required, for example, to predict the consequences of proposed changes
to the modeled system, to accommodate mandated changes to the modeled system,
to support reuse of the formal speci�cation and analysis, or to distill general
principles from the formalization and analysis.

Formal methods are supported in the speci�cation and analysis phases with mech-
anized tools that perform the steps shown in Figure 2.2. Tools that support user inter-
action typically provide these steps explicitly, whereas tools that are fully automated
do so implicitly. For example, most state exploration tools are fully automatic and do
not provide user control of the steps that check for syntactic and semantic consistency.
Mechanized support for the modeling phase exists, for example, in some of the infor-
mal object-oriented methodologies and in methods such as SCR. However, mechanized
support for modeling is not (yet) included in most formal methods (FM) systems and
is therefore not represented in Figure 2.2.

FM Phase Tool Tool Function

Speci�cation Parser Checks syntactic consistency

Speci�cation Unparser Translates internal representation
into display and outputs formatted text

Speci�cation Typechecker Checks semantic consistency

Analysis Animator, Exhibits behavior of system modeled
simulator by syntactically and semantically

correct speci�cation

Analysis Proof checker, Performs proof over syntactically
model checker and semantically correct speci�cation

Figure 2.2: Mechanical Support for Speci�cation and Analysis Phases of FM.

Except for documentation and maintenance, all the phases listed above form the
core of subsequent chapters, beginning with the characterization phase. This chapter
concludes with background regarding SAFER drawn from requirements documents and
operations manuals typical of the kind of documentation used for developing an initial
characterization of an application and its domain.

2.6 An Introduction to SAFER

Unless otherwise noted, this section is based on the SAFER Operations Man-
ual [SAFER94a]. A more detailed version of the material, along with all �gures cited
in this discussion, can be found in Appendix C.

SAFER, as shown in Figure 2.3, is a small, lightweight propulsive backpack sys-
tem designed to provide self-rescue capability to a NASA space crewmember separated

14 Chapter 2

Figure 2.3: Front and back views of SAFER system worn by NASA crewmember.

during an EVA. This could be necessary if a safety tether broke or was not correctly
fastened during an EVA on a space station or on a Space Shuttle Orbiter docked to a
space station. SAFER provides an attitude hold capability and su�cient propellant to
automatically detumble and (manually) return a separated crewmember. A
ight test
version of SAFER was
own on STS-64 and STS-76, and production variants have been
used on the initial MIR docking
ights.

The SAFER
ight unit weighs approximately 85 pounds and folds for launch, land-
ing, and on-orbit stowage inside the Orbiter airlock. SAFER attaches to the underside
of the Extravehicular Mobility Unit (EMU) primary life-support subsystem backpack,
without limiting suit mobility and is controlled by a single hand controller attached to
the EMU display and control module.

The hand controller contains a small liquid crystal display (LCD), two light-emitting
diodes (LEDs), a small control unit with three toggle switches, and the hand controller
grip, as shown in Figure C.4. The displays and switches are visible from all possible
head positions inside the EMU helmet, and the switches are positioned for either left-
or right-handed operation. The functions of the three displays and three switches are
as follows:

1. Liquid Crystal Display: A 16-character, backlit LCD displays prompts, status
information, and fault messages.

2. Light-emitting Diode: A red LED labeled \THR" lights whenever a thruster-on
condition is detected by the control software.

NASA-GB-001-97 15

3. Light-emitting Diode: A green LED labeled \AAH" lights whenever automatic
attitude hold is enabled for one or more rotational axes.

4. Switch: A three-position toggle switch labeled \PWR" powers on SAFER and
initiates the self-test or activation test functions.

5. Switch: A three-position momentary toggle switch labeled \DISP" controls the
LCD display, allowing the crewmember to select the previous or next parameter,
message, or test step. The switch springs back to the center (null) position when
released.

6. Switch: A two-position toggle switch labeled \MODE" selects the hand controller
mode associated with rotation and translation commands.

The hand controller is a four-axis mechanism with three rotary axes and one trans-
verse axis. To generate a command, the crewmember moves the hand controller grip
(mounted on the right side of the hand controller module) from the null center posi-
tion to mechanical hardstops on the hand controller axes. To terminate a command,
the crewmember returns the hand controller to the center position or releases the grip
so that it automatically springs back to the center. Figures C.5 and C.6 illustrate
the hand controller axes for translational and rotational commands, respectively. For
example, Figure C.5 indicates that with the control switch set to translation mode,
�Y commands are generated by pulling or pushing the grip right or left, respectively.
Careful study of these �gures reveals that the X translation command and the pitch
rotation command are always available in either mode. A pushbutton switch on the top
of the hand controller grip initiates and terminates automatic attitude hold.

The avionics software processes inputs from the hand controllers and various sensors,
and includes the following components:

1. Control Electronics Assembly (CEA): The CEA microprocessor takes inputs from
sensors and hand controller switches and actuates the appropriate thruster valves.

2. Inertial Reference Unit (IRU): The IRU senses angular rates and linear accelera-
tions and is central to the attitude hold capability.

3. Data Recorder Assembly (DRA): The DRA collects
ight-performance data, hand
controller and automatic attitude-hold commands, and thruster �rings.

4. Valve Drive Assemblies (VDAs): Each of the four VDAs, located with a cluster
of six thrusters, takes �ring commands from the CEA and applies voltages to the
selected valves.

5. Power Supply Assembly (PSA): The PSA produces regulated electrical power for
all SAFER electrical components.

6. Instrumentation Electronics: SAFER instrumentation includes a variety of sen-
sors, all of which are listed in Table C.1.

16 Chapter 2

The avionics software has two principal functions: maneuvering control for both
commanded accelerations and automatic attitude hold actions, and fault detection,
which supports in
ight operation, pre-EVA checkout, and ground checkout. A brief
summary of the control function is presented here. Sections C.1.4.2 and C.1.4.3
present a more detailed summary of the maneuvering control function and an account
of the fault detection function, respectively.

The maneuvering-control software commands both rotational and translational ac-
celerations. Translation commands provide acceleration along a single translational axis
and are prioritized so that X is �rst, Y is second, and Z is third. When rotation and
translation commands are present simultaneously, rotation takes priority and transla-
tions are suppressed. Con
icting input commands result in no output to the thrusters.
Whenever possible, acceleration is provided as long as a hand controller or automatic
attitude-hold command is present.

The SAFER crewmember can initiate (single-click) or terminate (double-click) au-
tomatic attitude hold at any time via the pushbutton on the top of the hand controller
grip. When terminated, automatic attitude hold is disabled for all three rotational
axes. If a crewmember issues a rotational command for a given axis when automatic
attitude hold is active, it is immediately disabled for that axis only. However, to ensure
that a failed-on hand controller command in a rotational axis will not disable automatic
attitude hold on that axis, automatic attitude hold takes precedence over a crewmember-
issued rotational command if the two are initiated simultaneously. Automatic attitude
hold provides an automatic rotational deceleration until all three axis rates are near
zero. These near-zero rates are automatically maintained whenever automatic attitude
hold is active.

Thruster-select logic takes acceleration commands from the hand controller and
from the automatic attitude-hold function, creates a single acceleration command, and
chooses thruster �rings to achieve the commanded acceleration. Thruster selection
results in on-o� commands for each thruster, with a maximum of four thrusters turned
on simultaneously. Thruster arrangement and designations are shown in Figure C.3.
Tables C.2 and C.3 specify the selection logic.

SAFER has 24 gaseous nitrogen (GN2) thrusters | four thrusters pointing in each of
the �X, �Y , and �Z axes. The thrusters are arranged in four groups of six thrusters
each, located as shown in Figure C.3. As noted, thruster valves open, causing the
thrusters to �re in response to directives from the avionics subsystem, which commands
as many as four thrusters at once to provide six degree-of-freedom maneuvering control
(�X, �Y , �Z, �roll, �pitch, �yaw). The SAFER propulsion system provides a total
delta velocity of at least 10 feet per second with an initial charge. The four GN2

tanks have a relatively small capacity and require several recharges during an EVA.
The recharge station is located in the Orbiter payload bay. When SAFER is not in use
or if a malfunction (such as a failed-on thruster) occurs, the tanks can be isolated via a
manually actuated isolation valve.

NASA-GB-001-97 17

The SAFER example introduced here is used throughout the guidebook to illustrate
key points in each chapter. Although this example attempts to formalize the actual
SAFER design, pragmatic and pedagogical considerations have inevitably resulted in
di�erences between the actual design and the formal speci�cation. These di�erences
do not detract from the presentation of a realistic example that captures the basic
characteristics of a class of space vehicles and the computerized systems that control
them. The fragment of the example chosen for inclusion at the end of each subsequent
chapter focuses on the thruster selection function responsible for creating an integrated
acceleration command from hand controller and automatic attitude-hold inputs.

18 Chapter 2

Chapter 3

Requirements

Requirements de�ne the set of conditions or capabilities that must be met by a system or
system component to satisfy a contract, standard, or other formally imposed document
or description [SE87]. For example, IEEE Standard 1498 [IEEE194, p. 7] de�nes a
requirement as \a characteristic that a system or software item must possess in order
to be acceptable to the acquirer." Similarly, the NASA Guidebook for Safety Critical

Software Analysis and Development [NASA-96, p. A-18] de�nes software requirements
as \statements describing essential, necessary, or desired attributes." In the context of
this guidebook, requirements are taken to be a statement of the essence of a system that
is typically produced at or near the beginning of the life cycle and guides and informs
the development, implementation, and maintenance of that system.1 The number of
steps between requirements, capture, and implementation depends on the life cycle
process for the system. Arguably, the more clearly articulated and di�erentiated the life
cycle phases are, the more likely it is that the requirements statement will be suitable
for formal analysis. A well-de�ned life cycle re
ects a mature process, including an
appreciation for the role and task of quality assurance. For example, a fairly typical,
mature life cycle process might include requirements de�nition, system design, high-level
design, low-level design, coding, testing (unit testing, component or function testing,
system testing), user support, and maintenance.

There are many considerations in the elicitation, capture, modeling, speci�cation,
validation, maintenance, traceability, and reuse of requirements, and a burgeoning group
of researchers interested in addressing these and related issues. This activity has led to
the recent emergence of a \discipline" [FF93, p. vi] known as \Requirements Engineer-
ing" that attempts to establish \real-world goals for, functions of, and constraints on
software systems" [Zav95, p. 214] and includes researchers in the social sciences as well
as in several areas of computer science.2

1This and similar remarks in Section 3.1.1 are not meant to suggest a particular life cycle model.
2Representative papers may be found in the proceedings of several new conferences, including the bi-

ennial international symposium �rst held in 1993 [RE93,RE95] and the biennial international conference

�rst held in 1994 [ICRE94, ICRE96].

19

20 Chapter 3

3.1 Requirements and Formal Methods

This guidebook takes a less generic interest in requirements, focusing here on require-
ments as objects of formal analysis and, in particular, the characteristics of requirements
that in
uence the application of formal methods, and conversely.

3.1.1 Impact of Requirements Speci�cation on Formal Methods

The most important characteristics of requirements as objects of formal analysis are the
level at which the requirements are stated, the degree to which they are explicitly and
unambiguously enumerated, the extent to which they can be traced to speci�c system
components, and the availability of additional information or expertise to provide the
rationale to motivate and clarify the requirements de�nition (as necessary).

3.1.1.1 Level of Requirements Capture

Requirements for the early stages of the life cycle, that is, up to and including the high-
level design phase, should be reasonably abstract and focus on basic characteristics,
including essential behaviors and key properties of the system. At this level, implemen-
tation considerations and low-level detail tend to distract one from the basic system
functionality. Requirements written at too low a level or with too strong an implemen-
tation bias may require reverse engineering before formal methods can be productively
applied.

3.1.1.2 Explicitness of Requirements Statement

Requirements should also be completely, precisely, and unambiguously stated. At this
level, the idea is to have a clear, precise statement that is reasonably complete and
doesn't admit multiple interpretations. This appears to contradict the previous point,
that the requirements be reasonably abstract and distill only essential behaviors and
properties, but there is really no contradiction. Clarity, precision, and completeness
involve explicitly identifying underlying assumptions and thoroughly enumerating all
relevant cases rather than specifying low-level detail and implementation factors. Am-
biguous requirements that cannot be further clari�ed may require the formal methods
practitioner to de�ne and explicitly record a set of operative assumptions to initiate the
formal speci�cation and analysis. Ultimately, any operative assumptions, as well as the
requirements speci�cation, should be validated.

3.1.1.3 Clarity of Delineation between a System and Its Environment

Requirements should clearly state the assumptions a system makes about its operat-
ing environment and should clearly delineate the boundary between the system and its

NASA-GB-001-97 21

operative context. For example, requirements should explicitly identify environmen-

tal quantities that the system measures, controls, or assumes, such as temperatures,
pressures, and user interface assumptions [HB95a, p. 23].3

3.1.1.4 Traceability of Requirements

System-level requirements should be traceable to identi�able (functional) subsystems,
components, or interfaces. Requirements that cannot be so traced may prove di�cult
to validate insofar as they specify system-level properties or behavior that is too general
or too ill-de�ned to be formally analyzed.

3.1.1.5 Availability of Underlying Rationale and Intuition

Requirements should also contain background material that motivates and illuminates
the requirements statement. Although such material is typically excluded from require-
ments documents, it is often possible to �nd domain expertise, project personnel, and
artifacts that provide essential information and insight. Such supplemental material is
crucially important if the requirements statement is low-level, implementation-oriented,
incomplete, or ambiguous.

It is unusual to be handed a set of requirements that is well-suited to formal speci�ca-
tion and analysis. Although formal methods provide techniques and tools for distilling a
set of requirements from informal or quasi-formal speci�cations and for exposing missing
or incomplete requirements, formal methods are not a panacea. The practitioner should
factor in the availability and suitability of requirements documents when considering a
formal methods application.

To illustrate, consider brie
y the experience recounted in [NASA93], which describes
an attempt to formalize the o�cial Level C requirements for the Space Shuttle Jet-Select
function [Roc91]. Although Space Shuttle
ight software is exemplary among NASA
software development projects, the requirements analysis and quality assurance in early
life cycle phases of the Shuttle used then-current (late 1970s and early 1980s) products
and tools. Shuttle software requirements are typically written as Functional Subsystem
Software Requirements (FSSRs) { low-level software requirements speci�cations written
in English prose and accompanied by secondary material including pseudocode, and
diagrams and
owcharts with in-house notations. Interpreting the Jet-Select FSSR
documents required the combined e�orts of a multicenter team for several months and
relied extensively on resident expertise at IBM Federal Systems Division.4 When a

3This paraphrase of a statement by Parnas, who has been among the most vocal advocates for an

explicit delineation between a system and its environment, was made in the context of computer software

systems, but the remark applies equally to other types of systems.
4The multicenter team consisted of personnel from NASA's Jet Propulsion Laboratory, Langley

Research Center (LaRC), and Johnson Space Center, and included subcontractors from Lockheed Martin

Space Mission Systems (formerly Loral, and, prior to that IBM, Houston) and SRI International. (The

work cited here was completed prior to either the Loral or Lockheed Martin eras, hence the references

to IBM.)

22 Chapter 3

new set of high-level Jet-Select requirements was formalized in the PVS speci�cation
language, it became clear that the Jet-Select function could be stated more simply. To
validate the PVS speci�cation, approximately a dozen lemmas, derived from a list of
high-level Jet-Select properties identi�ed by IBM, were formalized and proven. The
fact that the algorithm and its essential properties are di�cult to discern from the
FSSRs illustrates two complementary points: (1) the potential problems of low-level
requirements that only implicitly capture key properties and essential functionality,
and (2) the value of supplemental sources and materials to provide crucial information,
for example, the list of desired Jet-Select properties and the clari�cations provided by
IBM domain experts.5

3.1.2 Impact of Formal Methods on Requirements

The application of formal methods typically produces tangible artifacts, including for-
mal models, speci�cations, and analyses, that can impact the requirements to which
they are applied. The nature of the impact depends on the strategy used in the require-
ments development process, and in particular, the degree to which formal methods are
integrated into the existing process.

Fraser and his colleagues [FKV94] attempt to classify integration strategies with
respect to the following factors:

1. Does the strategy go directly from the informal requirements to the formalized
speci�cation or does it introduce intermediate and increasingly formal models of
the requirements?

2. If the strategy introduces intermediate (semiformal) models, is the process one of
parallel, successive re�nement of the requirements and the formal speci�cation, or
are the formal speci�cations derived after the (semiformal) requirements models
have been �nalized in a sequential strategy?

3. To what extent does the strategy o�er mechanized support for requirements cap-
ture and formalization?

The question of mechanized support for requirements capture and formalization re-
mains somewhat academic, since the fully automatic characterization of requirements
still relies primarily on research tools with limited scope and scalability. One exam-
ple is a knowledge-based \speci�cation-derivation system" that uses di�erence-based
reasoning and analogy mapping to recognize and instantiate schemas and interactively
derive speci�cations in a language similar to the Larch Shared Language [FKV94, p. 82].

5This example also illustrates the fundamental cost/bene�t trade-o�s that invariably arise when

substantial reverse engineering is required before formal methods can be applied. These and related

planning issues are discussed in Volume I of this guidebook [NASA-95a].

NASA-GB-001-97 23

Another example is the use of data-
ow diagrams and decision tables to develop \Struc-
tured Analysis" speci�cations that are then translated in VDM speci�cations by means
of \interactive rule-based algorithmic methods" [FKV94, pp. 84-5].6

Of more immediate interest are the strategies that use an iterative approach to the
successive re�nement of requirements. An example of the sequential application of the
iterative strategy is the use of formal methods in certain re-engineering projects where
the requirements are mature and well-established. However, it is the parallel application
of the iterative strategy that most substantively impacts the requirements de�nition.
An example of this type of application includes formalization of immature requirements
or formalization of requirements for ill-de�ned or ill-structured problem domains. In
these cases, there is the \potential of letting semiformal and formal speci�cations aid
each other in a synergistic fashion during the requirements discovery and re�nement
process" [FKV94, p. 82]. If this synergy is positive, the formal models, speci�cations,
and analyses may ultimately become (part of) the requirements|a development some
would applaud and others would view with concern. For example, Parnas [HB95a, p. 21]
notes that \Engineers make a useful distinction between speci�cations, descriptions, and
models of products. This distinction seems to be forgotten in the computer science lit-
erature." This may be similarly applicable to requirements, models, and speci�cations.
On the other hand, active research into formal semantics and automated reasoning
frameworks for industrially used notations [BS93, p. 191] points toward a coalescence
in some environments of informal requirements with their formalization and analysis.

3.2 Conventional Approaches to Requirements Validation

It is well recognized that identifying and correcting problems in the requirements and
early-design phase avoids far more costly �xes later. It is often said that late life cycle
�xes are 100 times more expensive than corrections during the early phases of software
development [Boe87, p. 84]. Focused arguments for the utility of software-requirements
analysis and validation have become increasingly common. For example, Kelly [KSH92]
documents a signi�cantly higher density of defects found during requirements versus
later life cycle inspections. Lutz [Lut93] notes that of roughly 195 \safety-critical" faults
detected during integration and system testing of the Voyager and Galileo spacecraft,
3 were programming bugs, 96 were attributed to
awed requirements, 48 resulted from
incorrect implementation of the requirements, and the remaining 48 faults were traced
to misunderstood interfaces.

Standard approaches to requirements analysis and validation typically involve man-
ual processes such as \walk-throughs" or Fagan-style inspections [Fag76, Fag86]. The
term walk-through refers to a range of activities that can vary from cursory peer reviews
to formal inspections, although walk-throughs usually do not involve the replicable pro-
cess and methodical data collection that characterize Fagan-style inspections. Fagan's

6The relative immaturity of these particular activities does not re
ect on the acknowledged maturity

of formal methods techniques in general. See, for example, [Gla95,McI95].

24 Chapter 3

highly structured inspection process was originally developed for hardware logic, next
applied to software logic design and code, and ultimately successfully applied to arti-
facts of virtually all life cycle phases, including requirements development and high-level
design [Fag86, p. 748]. A Fagan inspection involves a review team with the following
roles: a Moderator, an Author, a Reader, and a Tester. The Reader presents the design
or code to the others, systematically walking through every piece of logic and every
branch at least once. The Author represents the viewpoint of the designer or coder, and
the perspective of the tester is represented, as expected, by the Tester. The Moderator
is trained to facilitate intensive, but constructive and optimally e�ective, discussion.
When the functionality of the system is well-understood, the focus shifts to a search for
faults, possibly using a checklist of likely errors to guide the process. The inspection
process includes equally intense and highly structured rework and follow-up activities.
One of the main advantages of Fagan-style inspections over other conventional forms of
veri�cation and validation is that they can be applied early in the life cycle, for example,
to requirements and high-level design. Thus potential anomalies can be detected before
they become entrenched in the low-level design and implementation.

NASA supports a process derived from Fagan inspections, called \Software For-
mal Inspections" [NASA-93b, NASA-93a] that uses teams drawn from peers involved
in development, test, user groups, and quality assurance. The seven-step NASA pro-
cess spelled out in [NASA-93b] consists of planning, overview, preparation, inspection
meeting, third hour, rework, and follow-up stages. NASA inspections use checklists,
as well as standardized forms to record product errors and collect metrics associated
with the inspection process. The collection and monitoring of metrics is an integral
part of NASA's inspection process because it documents the progress of a project. If
reinspection is required, several of the steps may be repeated. With small variations,
the NASA inspection process is used at several NASA centers, including the Goddard
Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL) [Bus90], Johnson Space
Center (JSC)7, Langley Research Center (LaRC), and Lewis Research Center (LeRC).
The current validation process for NASA's Space Shuttle
ight software includes close
adherence to the inspection process for requirements, high-level test plans, and source
code [NASA93, p. 21].

Although these processes are considered e�ective and the quality of NASA shuttle

ight software is among the highest in NASA software development projects, the re-
quirements analysis seems less reliable than the analyses performed on later life cycle
products. For example, [Rus93a, p. 38] notes that \a quick count of faults detected and
eliminated during development of the space shuttle on-board software indicates that
about 6 times as many faults `leak' through requirements analysis, than leak through
the processes of code development and review." In light of these and similar obser-
vations, the following characteristics of the requirements analysis process have been
noted [NASA93, p. 9, 22]:

7The formal inspections cited here are actually used by Lockheed Martin Space Information Systems

(formerly, Loral and, prior to that, IBM, Houston), the Space Shuttle software subcontractor.

NASA-GB-001-97 25

� Current techniques are largely manual and highly dependent on the skill and
diligence of individual inspectors and review teams.

� There is no methodology to guide the analysis process and no structured way for
Requirement Analysts (RAs) to document their analysis. There are no completion
criteria.

� Although these techniques catch a substantial number of defects, the density of
defects found suggests that some errors escape detection.

� NASA projects using currently available techniques have reached a quality ceiling
on critical software subsystems, suggesting that innovations are needed to reach
new quality goals.

These types of issues constitute a signi�cant part of the rationale for exploring the
use of formal methods to complement and enhance existing requirements analysis and
design analysis processes for critical aerospace and avionics software systems.

3.3 SAFER Requirements

The set of SAFER
ight operations requirements used in this document are derived
from three o�cial project documents:

� Project Requirements Document [SAFER92]

� Prime Item Development Speci�cation [SAFER94b]

� Operations Manual [SAFER94a]

The derivation of these requirements illustrates challenges that typically confront
e�orts to formalize requirements for real-world systems. For example, the Project Re-
quirements Document provided brief characterizations for major components and func-
tions. Requirements at this level, such as those reproduced below, provide background
information, but they are at too high a level to be useful in the development of formal
speci�cations.

� The SAFER Flight Test Article shall provide six degree-of-freedom manual ma-
neuvering control.

� The SAFER Flight Test Article shall provide crewmember-selectable, three degree-
of-freedom Automatic Attitude Hold (AAH).

The Prime Item Development Speci�cation, while more informative, lacks detail in
certain critical areas. In general, the Operations Manual, which was not intended as a
requirements document, provides the most consistently useful information. Ultimately,

26 Chapter 3

synthesizing the material from two of the three sources was necessary �rst in order to
characterize a system that could be meaningfully formalized. A subset of the require-
ments from the Prime Item Development Speci�cation was augmented with more details
from the Operations Manual. This inherently subjective process, described here, was
guided by the need for requirements that provided a workable level of detail based on
a well-de�ned system architecture. If existing requirements documents directly support
the application of formal methods, or if domain expertise is readily available, the process
described here would not be necessary for formalization and analysis.

The subset of the requirements presented here (numbers 37 - 42) focuses on the
thruster-select function of the avionics software. Only the requirements that directly
specify thruster selection have been included; those indirectly involved, such as the
requirements that specify components providing thruster-selection input (the hand con-
troller unit) and output (the propulsion subsystem), appear in Section C.2, which con-
tains the full set of SAFER requirements.

Requirements 37 - 42 below specify the two basic thruster-select functions: (1)
integrating the input from the hand controller and automatic attitude hold (AAH) into
a single acceleration command and (2) selecting the set of thrusters to accomplish the
command. This functionality is speci�ed through a combination of high-level \shall"
statements and lower-level tables that de�ne the thruster-select logic. The numbers
associated with each requirement correspond to those used in Appendix C.

37. The avionics software shall disable AAH on an axis if a crewmember rotation
command is issued for that axis while AAH is active.

38. Any hand controller rotation command present at the time AAH is initiated shall
subsequently be ignored until a return to the o� condition is detected for that axis
or until AAH is disabled.

39. Hand controller rotation commands shall suppress any translation commands that
are present, but AAH-generated rotation commands may coexist with translations.

40. At most one translation command shall be acted upon, with the axis chosen in
priority order X, Y, Z.

41. The avionics software shall provide accelerations with a maximum of four simul-
taneous thruster �ring commands.

42. The avionics software shall select thrusters in response to integrated AAH and
crew-generated commands according to Tables C.2 and C.3.

Chapter 4

Models

The term model is used in two di�erent, albeit related, ways in the context of formal
methods. On the one hand, \model" is used to refer to a mathematical representation
of a natural or man-made system. This is consistent with the usage in science and engi-
neering, where mathematical representations are used to predict or calculate properties
of the systems being modeled. The statistical models used to analyze and predict me-
teorological phenomena and the models of planetary motion used to calculate satellite
launch trajectories and orbits are examples of these types of mathematical models, as
are the state machine models used to explore the behavior of complex hardware and
software systems.

A second usage of the term \model" derives from precise terminology in formal logic
and refers to a mathematical representation that satis�es a set of axioms. Exhibiting a
model for a set of axioms demonstrates that the axioms are consistent. For example,
one way to show that a speci�cation is consistent is to show that its axioms have a
model, as discussed in Chapter 6.

This chapter surveys characteristics of the types of mathematical models used in for-
mal methods and concludes with a discussion on modeling the SAFER thruster selection
function.

4.1 Mathematical Models

While there is no ambiguity about the meaning of the term \model" in the formal logic
sense, and little confusion about its informal use in the real world of concrete objects,
there is residual confusion surrounding the informal use of the term to refer to mathe-
matical objects. For example, when speaking of real products, such as jet planes, there
is no problem in distinguishing the notions of model, prototype, speci�cation, and de-
scription. A model of a 747 may or may not be
ightworthy and �t on a desk.1 A
prototype, on the other hand, would be one of the �rst 747s built and would exhibit

1Jackson [Jac95, pp. 120-122] follows Acko� [Ack62] in distinguishing three kinds of model: iconic,

analogic, and analytic. Using this three-way distinction, the model of the 747 is iconic, that is, the

27

28 Chapter 4

most, if not all, key properties of the actual 747 aircraft, including the ability to ac-
commodate 350 passengers. A speci�cation of the 747 would capture certain important
properties of the 747, possibly including the property that dimensions of the wing stand
in a certain relationship to the overall dimensions of the plane. A description is the
least constrained representation and may even include such useless detail as the fact
that the plane has a rather bulbous pro�le.2 On the other hand, Parnas' de�nition of a
model as \a product, neither a description nor a speci�cation." [Par95, p. 22] explicitly
acknowledges a confusion in the context of formal methods, where models and speci�-
cations are frequently con
ated. Concurrency provides a case in point. \It's not that
one usually wants to specify concurrency, but rather to study the properties of a model
of concurrency resulting from a speci�cation of a system." [CS89, p. 89]

4.1.1 Characteristics of Mathematical Models

In the context of formal methods, the most useful models tend to be abstract represen-
tations that focus on essential characteristics expressed in reasonably general terms and
formalized in judiciously chosen mathematics, that is, in mathematical representations
that are suitably expressive and provide su�cient analytic power. Of course, accuracy
with respect to the system being modeled is also essential.

4.1.1.1 Abstraction

Exploring the relationship between modeling and specifying a concrete (physical) object,
such as the 747, yields insight into desirable characteristics of abstract (mathematical)
models. For example, while it is possible to build a full-scale model of the 747, it is
almost certainly more useful to abstract away less important or less relevant features of
the 747 and concentrate on the simplest or most general expression of essential features
of interest. Two highly desirable consequences of creating suitably abstract models are
the elimination of distracting detail and the avoidance of premature implementation
commitments. For example, imagine using a desk-size model to discuss properties of
the overall design, that is, the layout and proportions of the aircraft, and of certain
components, such as the shape of the fore and aft sections of the wing, while ignoring
properties relating to the aircraft's size or to the structural materials used to build it.

The choices of mathematical representation and level of abstraction carry inher-
ent implications that must be explicitly considered. For example, Hayes describes the
implications of certain choices for modeling a simple symbol table.

\We are describing a symbol table by modeling it as a partial function. . . .
Here . . . we use it [the function] to describe a data structure. There may be
many possible models that we can use to describe the same object. Other

747 model is an icon of a real plane. See Section 4.1.1.3 for a brief discussion of analogic and analytic

models.
2The 747 example is based on a discussion in [Par95].

NASA-GB-001-97 29

models of a symbol table could be a list of pairs of symbol and value, or a
binary tree containing a symbol and value in each node. But these other
models are not as abstract, because many di�erent lists (or trees) can rep-
resent the same function. And we would like two symbol tables to be equal
if they give the same values for the same symbols." [Hay87, p. 39]

4.1.1.2 Focus

A model de�nes the space that can be explored by virtue of the (concrete or abstract)
representation choices it re
ects, but it does not prescribe the exploration per se, which
is the role of the speci�cation. The desk-size model of the 747 facilitates certain kinds
of questions and precludes others. These limitations are a direct consequence of the
nature of the model, re
ecting choices with respect to both focus and mathematical
representation. For example, the desk-size 747 does not lend itself to a study of either
the safety properties of the airplane's
y-by-wire system or the tensile properties of
production-grade materials. The same type of caveat applies to the abstract models
used in formal methods. \As with any model, we will have to determine what aspects
of reality we deem important and will have to ignore others. We must be quite clear,
therefore, on the boundaries of our models" [CS89, p. 94].

4.1.1.3 Expressiveness Versus Analytic Power

There is inevitably a tension between expressiveness and analytic power, as noted in
the following quote [CHJ86, p. 9].

\. . . in general, the larger the class of systems that can be described,
the less is analytically decidable about them. This unfortunate property of
mathematics means that great care and mathematical sophistication must
be applied to the design of models, especially if a lower level of sophistication
is to be expected of the engineers who use them."

Although the author of this quote is talking somewhat pessimistically about engineer-
ing models used to compute stresses, mass, friction, and so forth and appears to equate
expressiveness and descriptive generality, his observation about the tension between ex-
pressiveness and analytic potential is worth noting. In the context of formal methods,
expressiveness is typically used to refer to the ability to naturally and e�ectively char-
acterize a behavior or property of interest. Although generality certainly plays a role, it
is not the only hallmark of expressiveness. The analytic potential of a model is crucial
in formal methods applications because it is precisely the ability to analyze, that is to
calculate and predict, that confers the power and utility of formal methods.

4.1.1.4 Intuitive Versus Nonintuitive Representation

A further consideration can be characterized as naturalness of expression, that is, the
extent to which a model should be intuitively similar to the physical object it represents.

30 Chapter 4

Jackson [Jac95, pp. 120-122] cites the example of an electrical network used to model
the
ow of liquid through a network of pipes. The example is due to Acko� [Ack62],
who terms it an analogic model; the wires are analogous to the pipes, and the
ow of
current is analogous to the
ow of liquid. Acko� also identi�es a class of models that he
terms analytic, by which he appears to mean that the model embodies an analysis. For
example, a set of di�erential equations describing how prices change is analytic because
it expresses the economist's analysis of the relevant part of the economy. This is a
somewhat di�erent use of the term \analytic" than that of Cohen (above) and most
of the literature on formal methods. Although Acko�'s classi�cation is not necessarily
advocated here, the notions of analogic and analytic content of models are useful.

4.1.1.5 Accuracy

Finally, it is important to be aware not only of the limitations of models used for formal
methods, but also of their accuracy. Just as speci�cation and analysis are constrained
by the nature of the model, the ultimate utility and validity of the speci�cation and
analysis are limited by the degree to which the model is an accurate representation of
the system modeled.

4.1.2 Bene�ts of Mathematical Models

The advantages conferred by mathematical models are e�ectively those associated with
the more rigorous levels of formal methods, namely

� Mathematical models are more precise than an informal description written in
natural language or in quasi-formal notations, such as pseudocode, diagrammatic
techniques, and many CASE notations. One aspect of precision is the need to ex-
amine and make explicit all underlying assumptions; hence, mathematical models
also tend to force a more thorough analysis.

� Mathematical models can be used to calculate and predict the behavior of the
system or phenomenon modeled.

� Mathematical models can be analyzed using established methods of mathematical
reasoning. The axiomatic method that provides a discipline for proving properties
and for deriving and predicting new behaviors from those already known is an
example of one such method, in this case drawn from mathematical logic.3

Gries and Schneider [GS93, pp. 2{3] use the discovery of the planet Neptune to
illustrate some of these bene�ts of mathematical models. Since it is a particularly nice
example of the calculative and predictive power of mathematical models, the story is
recounted here. In the early 1800s, it was noted that there were discrepancies between
observations of the planet Uranus and the extant mathematical models of planetary

3See Chapter 6.

NASA-GB-001-97 31

motion | largely those formulated by Kepler, Newton, and others beginning in the
seventeenth century. The most likely conjecture was that the orbit of Uranus was being
a�ected by an unknown planet. In 1846, after two to three years of feverish manual
calculation, motivated in part by a prize o�ered by the Royal Society of Sciences of
G�ottingen in Germany, scientists converged on the probable position of the unknown
planet. That same year, using telescopes, astronomers discovered Neptune in the posi-
tion predicted by the models.

4.1.3 Mathematical Models for Discrete and Continuous Domains

In an introductory chapter to his classic history of mathematics viewed through the
lives and achievements of the great mathematicians, E. T. Bell notes that

\. . . from the earliest times, two opposing tendencies, sometimes helping
one another, have governed the whole involved development of mathemat-
ics. Roughly these are the discrete and the continuous." . . . The discrete
struggles to describe all nature and all mathematics atomistically, in terms
of distinct, recognizable individual elements, like the bricks in a wall, or the
numbers 1,2,3,. . . . The continuous seeks to apprehend natural phenomena|
the course of a planet in its orbit, the
ow of a current of electricity, the rise
and fall of the tides, and a multitude of other appearances. . . ." [Bel86, p. 13]

This dichotomy is, of course, re
ected in the mathematical models used to explore
the respective domains. The introductory comments in earlier sections of this chapter
have been chosen to apply equally to both discrete and continuous models, thereby
emphasizing the commonality between the fundamental role of models in both math-
ematical domains. Recently, a growing interest in hybrid systems | that is, systems
composed of continuous components selected, controlled, and supervised by digital com-
ponents | has led to an integration of discrete and continuous models. The resulting
models integrate the di�erential-di�erence-type equations used in classical models of
continuous physical systems with the mathematical logic and discrete mathematics used
in conventional models of digitial systems.4

For most of this chapter, the focus will be the discrete domain models typically used
in formal methods. While the mathematics exploited in models for discrete domains
is generally simpler than that for continuous domain models, it is also less familiar to
those with engineering backgrounds. With this in mind, a small example from control
theory is presented �rst. The technical details of the example are not important; the
focus here is not on advanced control theoretic methods, but on modeling techniques.

4Representative papers may be found in the proceedings of several recent workshops, includ-

ing [GNRR93,AKNS95,AHS96].

32 Chapter 4

4.2 Continuous Domain Modeling

This discussion illustrates the use of continuous mathematics to model an example
drawn from spacecraft attitude control. The example was chosen to allow the reader
to compare and contrast the continuous model with the discrete model used for the
SAFER example, both of which derive from the domain of spacecraft attitude control.
In both cases the goals are the same: rigorous description and prediction of behavior.
What di�ers are the character of the underlying mathematics and the techniques used
for calculation.

A rigid body or spacecraft in a stable orbit may experience rotational motions that
require correction or nulling. A �xed or slowly rotating attitude, pointing the spacecraft
at a speci�c target or in a speci�c direction, is typically desired. Solving this problem
requires a model of rigid body dynamics and, once a control strategy is adopted, a model
of the expected behavior under the desired control regime. The mathematical basis for
such models is invariably that of di�erential equations, which o�er a well-understood
theory to support calculation and prediction.

Following Bryson [Bry94], the rotational motions of a rigid body in space can be
modeled as follows: let the angular velocity vector ~! be de�ned with respect to the
center of mass and principal body axes, making the products of inertia zero. Let ~{, ~|, ~k
be the unit vectors along the x; y; z principal body axes so that

~! = p~{+ q~|+ r~k (4.1)

Denote by Ix, Iy, Iz the moments of inertia, and by Qx, Qy, Qz the body-axis compo-
nents of the external torque. The equations of motion describing the body rotations are
then given by

Ix _p� (Iy � Iz)qr = Qx

Iy _q � (Iz � Ix)rp = Qy

Iz _r � (Ix � Iy)pq = Qz

(4.2)

where the time derivative of quantity v is denoted _v. The resultant external torque ~Q

includes any intentionally applied torques as well as disturbance torques from sources
such as gravitational or magnetic �elds.

Consider the problem of achieving attitude hold, that is, applying a time-varying
torque to hold a rigid body's rotation at zero or near-zero levels with respect to inertial
space. Assume �rst that any disturbance torques present are small compared to the
applied torques and hence may be ignored. This situation exists for \fast attitude
control" based on the use of thrusters. Assume further that the mass properties of the
rigid body are su�ciently symmetric about the axes so that the axes may be regarded
as decoupled and control can be achieved for each axis independently. Finally, assume
that appropriate sensors are available to sense both attitude and attitude rate for the
axes of interest. For purposes of this discussion, consider a single axis only, the principal
y-axis, whose attitude deviation is denoted by � and attitude rate by _�, where _� equals
q from equations (4.1) and (4.2).

NASA-GB-001-97 33

If the thrusters are proportional, that is, they can be throttled to provide variable
amounts of thrust, then attitude control can be achieved using a simple linear control
law. The applied torque is derived by feeding back a linear combination of attitude
deviation and attitude rate:

Iy �� = Qy = �D _� �K� (4.3)

Motion will be stabilized as long as D > 0 and K > 0.
Proportional gas jets for attitude control are impractical, however, and the more

typical method is to use thrusters whose valves are either completely open or completely
closed. This leads to what is often termed \bang-bang" control. In pure bang-bang
control, thrust is switched between one thruster and its opposing jet, exactly one of
which is on at all times. Thus, the control torque has only two values, QT and �QT .

Attitude deviation can be reduced through nonlinear control to nearly zero by ap-
plying the torque

Q = �QT sgn(� + � _�) (4.4)

where

sgn(x) =

(
1 if x > 0
�1 otherwise

(4.5)

and � is a constant making �+ � _� a linear switching function, thereby de�ning a line in
the �- _� phase plane across which thrust reversal occurs. Using this control logic results
in the following relationship between Q and the attitude quantities:

_�2 =
2Q

I

�
� � �0 +

I

2Q
_�20

�
(4.6)

The model predicts a convergence process that drives both � and _� toward zero, where
they will eventually enter a limit cycle surrounding � = _� = 0.

A further re�nement in a practical design would add a \dead zone" around the
desired attitude where no thruster �ring occurs. Such a scheme is used in the SAFER
system described in Appendix C. Hysteresis is typically also incorporated, resulting in
control laws with additional nonlinearities. In such cases, the model shown for pure
bang-bang control is embellished to capture the more elaborate limit cycle behavior.

The focus now shifts from continuous domain modeling techniques to those of dis-
crete domain modeling.

4.3 Discrete Domain Modeling

This discussion of discrete domain models is intended to be representative rather than
exhaustive. To that end, the discussion is framed in terms of four broad classes of dis-
crete domain models: functional, abstract state machine, automata-based, and object-
oriented. Of course, there are variants and shadings both within and between these

34 Chapter 4

classes, so that the four categories represent a descriptively useful, but somewhat arti-
�cial classi�cation.

As the application of techniques from logic and discrete mathematics to problems of
interest in computer (hardware and software) systems, formal methods inherently con-
cern computation. By the same token, one of the ways in which formal methods usually
di�er from traditional uses of logic and discrete mathematics is that they incorporate a
model of computation. The model of computation may be built in, that is, implicit, as it
is in Hoare logic [Hoa69] and its variants, such as VDM [Jon90] and Z [Spi88,Wor92]|
meaning that there is a built-in notion of program state, and a set of constructs for
composing operations that a�ect the state. Or it may be constructed on top of an
\ordinary" logic as Hoare logic may be de�ned within higher-order logic [Gor89]. The
advantage of the built-in approach is obvious when the built-in model is appropriate
to the task at hand. The advantage of the \constructed" approach is that it is possi-
ble to tailor the model to suit the circumstances of a given application. For example,
adding concurrency to a sequential Hoare logic is not easy|it generally cannot be done
within the logic, but requires metalogical adjustments|whereas various models of par-
allel computation can be encoded in higher-order logic.

One of the key decisions in developing models for formal methods applications is the
relevance, if any, of the underlying model of computation, that is, the extent to which
the underlying computational paradigm should be explicitly modeled. It is useful to
keep this in mind during the discussion of discrete-domain models.

4.3.1 Functional Models
5

A functional model is one that employs the mathematical notion of function in a pure

form, often in conjunction with an implicit and very simple computational model. A
surprisingly wide variety of algorithms can be adequately described as recursive func-
tions, assuming the most elementary model of computation, namely, the operation of
function composition. For example, one of the crucial insights in the speci�cation and
analysis of the Byzantine Agreement protocols [Rus92] was the observation that a sim-
ple functional model of computation is su�cient, that is, it is not necessary to explicitly
model the (inherently complex) distributed computational environments in which these
protocols normally execute.6 For a more concrete example, consider a functional model
for a simple synchronous hardware circuit, such as a binary (full) adder that takes three
one-bit inputs x, y, and c i (carry-in) and produces sum and carry-out bits s and c o,
respectively. In the functional model, a block with several outputs is modeled by several

5Models for synchronous hardware circuits are used to illustrate many of the ideas in this section.

Although these hardware models suggest lower-level, more architectural issues than those discussed

elsewhere in this guidebook, the simple hardware models provide more concise, transparent examples of

the modeling techniques in question than are typically available with requirements-level speci�cations.
6John Rushby provided this observation, which he credits, in turn, to Bill Young [BY90].

NASA-GB-001-97 35

functions, one for each output,7 and \wiring" is modeled by functional composition. Us-
ing this functional model, the binary adder would be then be speci�ed by two functions,
one each for s and c o:

s(x, y, c_i) = (x + y + c_i) rem 2

c_o(x, y, c_i) = (x + y + c_i) div 2

The relational model, �rst popularized by Mike Gordon for hardware veri�ca-
tion [Gor86], is a variant of the functional model that exploits the more general notion
of mathematical relation. In the relational model, a functional block is represented by
a single relation on the input and output \wires" that speci�es the overall input-output
relation. For example, using the relational model, the adder might be speci�ed by the
following relation:

adder(x, y, c_i, s, c_o) =

(s = (x + y + c_i) rem 2 AND c_o = (x + y + c_i) div 2)8

In the relational model, composition is accomplished by identifying \wires" with vari-
ables, conjoining the relations representing the individual blocks, and using existential
quanti�cation \to hide" the internal wires.

For example, the implementation of a full adder in terms of half adders and a nand9

gate can be accomplished by the circuit shown in Figure 4.1. A half adder takes two
inputs a and b, and produces sum (s) and (complemented) carry (c) bits satisfying

half_adder(a, b, s, c): bool = (2 * (1-c) + s = a + b)

while a nand gate produces an output (o) that is 0 if the sum of its inputs is two, and
1 otherwise:

nand(x, y, o): bool = (o = IF x + y = 2 THEN 0 ELSE 1 ENDIF)

The \wiring diagram" of Figure 4.1 is then speci�ed by the formula

EXISTS p, q, r :

half_adder(x, y, p, q) AND half_adder(p, c_i, s, r) AND nand(r, q, c_o)

7In a language such as PVS, that has tuple-types, a single function that produces a tuple, that is,

bundle, of values could be used.
8A more \requirements" oriented version would be adder(x, y, c i, s, c o) = (2 * c o + s =

x + y + c i) (with type constraints restricting all variables to the values 0 and 1).
9Nand is also known as the She�er stroke and symbolized as \j". As the name suggests, nand is

de�ned as the negation of the and (^) operation. Using De Morgan's laws, the ^ and _ (or) operations,

and Boolean variables x and y, nand is de�ned

x j y = :(x ^ y) = :(:(:x _ :y)) = :x _ :y

The nand and nor (not or) operations played an important role in logical design because each is func-

tionally complete, that is, every switching function can be expressed entirely in terms of either of these

two operations.

36 Chapter 4

Half
Adder

Half
Adder

Nand
- -

-

-

- -

-

-

ci

x

y

s

co

p r

q

Figure 4.1: Implementation of a Full Adder.

The advantage of the functional approach is that it can lead to very simple and ef-
fective theorem proving|basically just term rewriting, and can be \executed" to yield a
\rapid prototype." The advantages of the relational approach are that it directly corre-
sponds to wiring diagrams (variables correspond exactly to wires, relations to functional
blocks), and that it can cope with feedback loops. It is often possible to combine the
methods, as in the �rst of the relational \adder" examples above, where the conjuncts to
the relation correspond directly to the functions of the functional model. The combined
approach may additionally involve an explicit representation of state.

4.3.2 Abstract State Machine Models

A state machine model typically consists of an abstract representation of system state

and a set of operations that manipulate the state to e�ect a transition from the current
to the next state. Figure 4.2 illustrates a basic abstract state machine model. The

-

�State

Inputs - - OutputsState
Machine
Transition
Function

Figure 4.2: Abstract State Machine Model.

state machine transition function is a mathematically well-de�ned function that takes
input values and current-state values, and maps them into output and next-state values.

NASA-GB-001-97 37

Representing each of these values as a vector, this function, M , can be characterized as
follows, where I and O are inputs and outputs, respectively, and S is a set of states. Note
that this formalization does not explicitly represent the distinction between current- and
next-state values.

M : I � S ! [O � S]

M can be used to capture the functionality of a given system, as well as to for-
malize abstract properties about system behavior. For example, if sequences I(n) =
< i1; : : : ; in > and O(n) = < o1; : : : ; on > denote the
ow of inputs and outputs that
would occur if the state machine were run for n transitions, then a property about the
behavior of M could be expressed as a relation P between I(n) and O(n). Ultimately,
it would be possible to formally establish that the property P does indeed follow from
the formal speci�cation M .

The A-7 methodology [H+78, Hen80, vS90, Par91, PM91] developed for describing
the requirements for control systems illustrates how the state machine model can be
specialized to accommodate a particular type of application. In this case, the basic idea
is that a control system can be modeled as a control function plus a state. The system
evolves in time: at each iteration or frame it reads the values of certain monitored vari-

ables, that is, it samples sensors, consults the current values of its state variables, and
computes a function that yields a pair of results: new values for the state variables and
output values for the control variables. The data
ow diagram in Figure 4.3 illustrates
the basic A-7 model for a system with one monitored variable x m, one control variable
y c, and a single state variable z, which is denoted z s and z f according to whether
it is being read from, or written to, the local state. The purpose of a requirements
speci�cation in this context is to specify the box labeled \control."

state control
-

�

?

?

x m

y c

z s

z f

Figure 4.3: A-7 Model of a Simple Control System.

To specify this model of computation explicitly, the variables x m and so on would
be modeled as traces: functions from time (that is, frame number) to the type of the

38 Chapter 4

value concerned. For example, x m(t) is the value of monitored variable x m at time
(frame number) t. It is then possible to specify how the outputs are computed and
how the renaming of f variables to s variables occurs by means of the set of recursive
equations:

y_c(t) = f(x_m(t), z_s(t))

z_f(t) = g(x_m(t), z_s(t))

z_s(t) = z_f(t-1)

where f is a function that speci�es the computation for the control output and g is a
function that speci�es how the local state value is updated (see Figure 4.4). In general,
there will be many monitored, controlled, and state values, and those values themselves
can be vectors of values or arbitrary data types.

control

f

g

-

?

�

?

?

?

t

x m

y c

t

z s

z f

Figure 4.4: State-Update and Actuator Functions within Control System.

On the other hand, if there is no need to reason about the evolution of the system
over time, a far simpler representation that uses pure functions on simple values rather
than traces may su�ce to specify how the \new" values of the various state and output
variables are derived in terms of the monitored and \old" values. The conceptual model

NASA-GB-001-97 39

used to formalize the Jet Select function of the Space Shuttle
ight software [NASA93]
provides an example of this approach. Jet-Select is a low-level Orbit DAP control
function that is responsible for selecting which Reaction Control System jets to �re to
achieve translational or rotational acceleration in a direction determined by higher-level
control calculations or crew input. In the pilot study cited, the behavior of a component,
such as the rotation compensation module, would be represented by a function that
models the external interface to the function. Note the explicit representation of prior-
and next-state values in the signature of the function, f .

f : external inputs� prior state inputs! [external outputs;next state outputs]

4.3.3 Automata-Based Models

An automaton is a �nite-state transition system consisting of a set of states and a set
of state-to-state transitions that occur on input symbols chosen from a given alphabet.

4.3.3.1 �-Automata

Automata may be deterministic, meaning that there is a unique transition from a given
state on a given input, or nondeterministic, meaning that there are zero, one, or more
such transitions. Formally, a deterministic �nite automaton is de�ned as a 5-tuple
(S;�; �; s0; F), where S is a �nite set of states, � is a �nite input alphabet, s0 is the
initial state, F � S is the set of �nal states, and �, the transition function, maps S ��
to S. A nondeterministic �nite automaton is similarly de�ned as a 5-tuple, the only
di�erence being that � is a map from S � � to the power set of S, written P(S). In
other words, �(s; a) is the set of all states s0 such that there is a transition labeled a
from s to s0. A thorough introduction to �nite automata may be found in [Per90].

Conventional or �-automata accept only �nite words and can express state invariants,
that is, safety properties or properties \at a state", but not eventualities or fairness
constraints [Kur94, p. 13].10

4.3.3.2 !-Automata

To accommodate eventualities, it is necessary to use a class of automata that accepts
in�nite words (sequences), the so-called !-automata. Like a conventional automaton,
an !-automaton consists of a set of states, an input alphabet, a transition relation, and
a distinguished initial state. The di�erence between the two classes of automata occurs
in the de�nition of acceptance. Acceptance for a conventional automaton is de�ned in
terms of a �nal state. Since the notion of �nal state is not useful for a class of machines
that accepts in�nite words, acceptance must be de�ned in some other way. Various

10Fairness constraints specify, for example, that certain actions or inactions do not persist inde�nitely

or that \certain sequential combinations of actions are disallowed" [Kur94, p. 57]. Anticipating the

discussion in Section 6.2.1.1, a fairness property can be de�ned as an LTL property (p) of the type

GF(p). This de�nition uses CTL* syntax; the de�nition could also be written using LTL operators.

40 Chapter 4

acceptance conditions have been given for !-automata [CBK90, p. 104], two of which
are given below. The de�nitions that follow are based on a discussion in [CBK90].
A (nondeterministic) !-automaton is a 5-tuple (S;�; �; s0;F), where S, �, and s0 are
as de�ned above, F is an acceptance condition, and � : S � � ! P(S) is a transition
relation. The automaton is deterministic if for every state s 2 S and every a 2 �,
j�(s; a) � 1j. A comprehensive survey of !-automata appears in [Tho90].
�

The following de�nitions, again taken from [CBK90], are necessary for de�ning par-
ticular instances of F . A path in an !-automaton, M , is an in�nite sequence of states
s0 s1 s2 : : : 2 S that begins in s0 and has the following property: 8i � 1;9ai 2 � :
�(si; ai) 3 si+1. A path s0 s1 s2 : : : 2 S

! in M is a run of an in�nite word a1a2 : : : 2 �
!

if 8i � 1 : �(si; ai) 3 si+1. The in�nitary set of a sequence s0 s1 s2 : : : 2 S
!, written

inf(s0s1 : : :), is the set of all states that appear in�nitely many times in the sequence.

�
A B�uchi automaton M is an !-automaton where the acceptance condition, F , is

de�ned as follows. F � S is a set of states (as in the case of a �-automaton) and a path
p is accepted by M if inf(p)\F 6= ;. The acceptance condition of a Muller automaton
is a set F � P(S) of sets of states. A path is accepted by a Muller automaton if
inf(p) 2 F . Other !-automata that appear in the literature are Rabin, Streett, L, and
8� automaton. Although acceptance conditions for these automata are not de�ned here,
it is worth noting that \an in�nite word is accepted by a B�uchi, Muller, Rabin, Streett,
or L automaton if it has an accepting run in the automaton. An in�nite word is accepted
by a 8-automaton if all its possible runs in the automaton are accepted." [CBK90, p. 106]

4.3.3.3 Timed Automata

Timed automata are a generalization of !-automata and are used to model real-time
systems over time. Like !-automata, timed automata generate (accept) in�nite se-
quences of states. However, timed automata must also satisfy timing requirements and
produce (accept) timed state sequences. Timed automata may be given various se-
mantic interpretations, including point-based strictly-monotonic real-time (the original
interpretation), interval-based variants, interleaving, �ctitious clock, and/or synchronic-
ity [AH91]. An excellent discussion of the theory of timed automata and its application
to automatic veri�cation of real-time requirements of �nite-state systems may be found
in [AD91].

4.3.3.4 Hybrid Automata

Hybrid automata extend �nite automata with continuous activities and are used to
model systems that incorporate both continuous and digital components. Hybrid au-
tomata may be viewed as \a generalization of timed automata in which the behavior of
variables is governed in each state by a set of di�erential equations." [ACHH93] There

NASA-GB-001-97 41

are various classes of hybrid automata, including linear hybrid automata and hybrid
input/output automata. Linear hybrid automata require the rate of change with time
to be constant for all variables (although the constant may vary from location to loca-
tion) and the terms used in invariants, guards, and assignments to be linear.11 Alur et
al. [ACHH93] provides a good introduction to hybrid automata and [AH95] describes
a symbolic model checker for linear hybrid systems. Hybrid input/output automata
(HIOA) focus on the external interface of a modeled hybrid system through distinctions
in the state variables | which are partitioned into input, output, and internal variables
| and the transition labels | which are similarly partitioned into input, output, and
internal actions. Lynch [LSVW96] gives a useful introduction to HIOAs and [AHS96]
contains several papers, including [Lyn96], describing the use of HIOAs to model and
analyze automated transit systems.

4.3.4 Object-Oriented Models

Object-oriented models represent systems as structured collections of classes and ob-
jects with explicit notions of encapsulation, inheritance, and relations between ob-
jects. Several informal object-oriented analysis and design methodologies are cur-
rently popular, including Booch [Boo91], Coad and Yourdon [CY91a, CY91b], Rum-
baugh [RBP+91, RB91], Shlaer and Mellor [SM91], Goldberg [Sys92, RG92] and most
recently, Uni�ed Modeling Language (UML) [Rat97]. These methodologies o�er a useful
and easily assimilated approach for structuring an application based on multiple dia-
grammatic views of the underlying system. UML, which represents a uni�cation of the
Booch, Rumbaugh, and Jacobson methods, employs static structure, use case, sequence,
collaboration, state, activity, and implementation diagrams. Rumbaugh's Object Mod-
eling Technique (OMT) [RBP+91] method, which is used in the following example,
employs three separate modeling techniques: entity-relationship-type diagrams, state
machines or Statecharts [Har87,HN96], and data
ow diagrams, yielding a composite
model whose components are typically linked rather than integrated or uni�ed.

The following fragment of a design-level OMT representation of a generic fault pro-
tection monitor based on a study of the Cassini spacecraft [LA94,AL95] illustrates the
use of object-oriented techniques for modeling spacecraft systems. The OMT represen-
tation is generic in that it attempts to explicitly document the functionality and at-
tributes shared by all the Cassini fault protection monitors. In the context of spacecraft
systems, the term \monitor" refers to software that periodically checks for system-level
malfunctions and invokes recovery software as appropriate. There are eighteen moni-
tors in the system-level fault protection onboard the Cassini spacecraft, including eight
\over temperature" monitors. The other ten monitors detect loss of commandability

11A timed automaton is a special case of linear hybrid automaton in which each continuously chang-

ing variable is an accurate clock whose rate of change with time is 1. In a timed automaton, all

terms involved in assignments are constants and all invariants and guards compare clock values with

constants [ACHH93].

42 Chapter 4

(uplink), loss of telemetry (downlink), heartbeat loss (that is, loss of communication
between computers), overpressure, undervoltage, and other selected failures.

The OMT approach provides three viewpoints: the object model, the functional
model, and the dynamic model. Figures 4.5, 4.6, and 4.7 illustrate these three models
for the Cassini fault monitor at the design level.

Enabled Flag
Active Flag
Response-Requested
Priority

Activate

Fault Indications

Enable output
Disable output

Monitor

Commanded state
Fault threshold
Prior status
Fault status

Valid Data

Test data validity

Valid-range filters

Measured values

Sensor Data Input

Request response
Test output enabled
Detect fault persistence

Persistence counter
Persistence limit

Detect fault
Vote on fault Update flags, counters

Figure 4.5: Object Model of Cassini Generic Fault Protection Monitor.

Figure 4.5 reproduces the object model, a static representation of the system that
re
ects four attributes and three operations that de�ne the monitor class (activate,
enable output, and disable output). The class is further decomposed into three object
classes: sensor data, valid data, and fault indicators. The attributes and operations for
these three classes de�ne the interfaces between the monitor class and the rest of the
system.

Figure 4.6 reproduces the functional model, which represents the computation that
occurs within a system and is presented as a series of data
ow diagrams. The top-
level diagram documents the interfaces between the fault protection manager and the

NASA-GB-001-97 43

for fault

Test for

Test for

valid

data

data

valid
fault

Test for

fault

Test for

of fault Test response
Request

Persistence counter

State flags
positions

Thresholds/
commandedFilters

Sensor n
input

input
Sensor 1

presence

Fault

Valid

data

data
Valid

Fault
indica-
tion

Fault
indica-
tion

Vote on

Figure 4.6: Functional Model of Cassini Generic Fault Protection Monitor.

monitor. The manager activates the monitor and processes the monitor's request for
a fault response. The monitor receives data from the hardware sensors (\measured
state"), from the \commanded state" that is stored in memory, and from the updates
to the state made by previous executions of the monitor itself, and uses the information
to determine an appropriate fault response.

Figure 4.7 reproduces the dynamic model that speci�es the
ow of control, interac-
tions, and sequencing of operations. These dynamic aspects are modeled in terms of
events and states using standard state diagrams (that is, graphical representations of
�nite state machines). The behavior of the Cassini fault protection monitors is highly
sequential. The state transition model provides a clear and intuitively straightforward
representation of the typical six-state sequence followed by an active monitor in the
presence of a fault that requires a recovery response.

While the types of informal object-oriented models illustrated here have considerable
utility, their usefulness in the context of formal methods is limited because they do not
have an underlying mathematical basis and therefore lack a precise semantics and the
ability to support formal reasoning. More general caveats expressed in regard to some
or all of these informal object-oriented methods include the following [Jac95, p. 137]: (1)
objects belong to �xed classes|the rigidity of these class structures precludes transition
or metamorphosis of objects; (2) objects typically inherit properties and behavior from a
single class at the next hierarchical level; this notion of single inheritance precludes many

44 Chapter 4

Activated test
Passes

test
Passes

test

Passes

Passes

fault indicated

Determine if

sensor data

Test for fault in

validity

Test data

Test for fault

persistence
Check if output

enabled

Request
Update state

values

Passes
test responsetest

Figure 4.7: Dynamic Model of Cassini Generic Fault Protection Monitor.

naturally occurring inheritance patterns involving shared and multiple inheritance; (3)
objects are inherently reactive and typically cannot initiate activity of any kind. Al-
though these three caveats are now addressed in many object-oriented programming
languages, for example, through multiple inheritance, dynamic object classi�cation, and
concurrency, the popular methodologies that support the earlier stages of development
do not typically address these issues. A fourth caveat is that the lack of integration in
composite models often makes it di�cult to reason e�ectively about system behavior.

Historically, object-oriented ideas evolved from the notions of classes and objects
in Simula 67. In the following quote, Ole-Johan Dahl discusses this evolution in the
context of formal techniques.

\Object orientation, as it appears in Simula 67, was motivated by two
main concerns: To achieve good structural correspondence between discrete
event simulation programs and the systems being modelled. And to provide
language mechanisms for the construction of reusable program components
while maintaining good computer e�ciency.. . . Object orientation has proved
to be a successful structuring strategy also outside the area of simulation.
This is due to the fact that objects are useful general purpose tools for
concept modelling, and can lead to better program decomposition in general,
as well as new kinds of reusable program components. It is worth noticing
that the class concept of Simula 67 is used to represent \modules" and
\packages" as well as object classes." [Dah90]

Object-oriented ideas share this ancestry with algebraic speci�cation; the classes
of objects and \pre�xing" central to Simula 67 ultimately led to object-oriented pro-
gramming languages and to the theory of algebraic speci�cations [Bre91]. Algebraic
speci�cations treat data structures and program development concepts, such as re�ne-
ment, in an axiomatic logical style and use high-level descriptions of data types known

NASA-GB-001-97 45

as abstract data types. Abstract data types are manipulated by similarly high-level
operations that are speci�ed in terms of properties, thereby avoiding implementation-
dependent data representations. As Abadi and Cardelli note in their book on the
(formal) foundations of object-oriented programming languages [AC96, p. 8], \. . . data
abstraction alone is sometimes taken as the essence of object orientation." This his-
torical connection is of interest because the frameworks of algebraic speci�cation and
of object-oriented programming languages have each contributed to ongoing attempts
to provide a mathematical basis for the concepts underlying object-oriented models.12

This research has taken many directions, including those summarized below. In keeping
with the focus of this guidebook, the examples included in this discussion suggest the
variety of the work in this area, but are by no means exhaustive.

One approach is to take a model generated by one of the informal object-oriented
methodologies and formalize it using a novel or existing formal description technique.
For example, Moreira and Clark [MC94] describe a technique for producing a formal
object-oriented analysis model that integrates the static, dynamic, and functional prop-
erties of an object-oriented model created using one of the informal object-oriented
methodologies.13 The formal model uses LOTOS (Language of Temporal Ordering
Speci�cation) [ISO88], which has a precise mathematical semantics and represents the
system as a set of communicating concurrent objects.14 An object is represented as
the instantiation of a LOTOS process, and communication among objects takes the
form of message passing, which is modeled by objects synchronizing on an event during
which information may be exchanged. In this approach, the dynamic aspects of a class
template are modeled as a LOTOS process and the static properties as abstract data
types.

Another approach is to take notation from one of the informal methodologies and
formalize it, thereby providing a formal semantics for the informal notation. For ex-
ample, Hayes and Coleman [HC91] use Objectcharts15 [CHB92] and a derivative of
VDM [Jon90] to provide a coherent set of formal models corresponding to the mod-
els generated by a subset of OMT. Brie
y, Hayes and Coleman introduce an object

structure model, linking the formal representations of the informal OMT models (ob-
ject, dynamic and functional) to provide traceability and consistency checking. The
informal OMT functional model is replaced by VDM-style pre-post condition speci�ca-
tions over the object structure model, the informal dynamic model is formalized using
Objectcharts, and the object model uses the formalized entity-relationship notation de-

12See, for example, recent proceedings from conferences such as ECOOP (European Conference on

Object-Oriented Programming [TP94,Olt95]) and OOPSLA (Object-Oriented Programming Systems,

Languages, and Applications) [ACM94].
13 [MC94] actually describe a Rigorous Object-Oriented Analysis (ROOA) method that combines

object-oriented analysis and formal description techniques. This discussion focuses only on their mod-

eling approach.
14That is, a set of communicating processes. The approach is based on process algebra, drawing on

elements from CCS [Mil89] and from CSP [Hoa85].
15An Objectchart is an extended form of Statechart [Har87,HN96] used to specify object classes.

46 Chapter 4

scribed in [FN86]. There has also been work integrating formal and object-oriented
methods using VDM++ and OMT [LG96]. VDM++ is an object-oriented extension of
VDM designed to support parallel and real-time speci�cation.

Ongoing work at the Michigan State University Software Engineering Research
Group [BC94,CWB94] is yet another variant on this approach. Their prototype system
uses algebraic speci�cations to formalize a subset of the OMT object-modeling nota-
tion appropriate for modeling requirements. Again, the formalization is based on the
straightforward mapping between object-oriented software concepts and abstract data
types.16

The CoRE method [FBWK92] for specifying real-time requirements provides a fur-
ther example of the coherent integration of object-oriented and formal models. CoRE
is an amalgam of the CASE Real-Time Method (which is itself an amalgam of Real-
Time Structured Analysis [WM85] and object-oriented concepts) and the four-variable
model [vS90, vSPM93] developed by Parnas and his colleagues. CoRE interprets the
three basic structural elements of the CASE Real-Time method: information, process,
and behavior pattern, in terms of object-oriented concepts. Processes correspond to
object classes and interprocess connections to interactions between objects. The state
machines used to encode the behavior-pattern view are partitioned to correspond to the
states of an object class. The formal model underlying object de�nition and decompo-
sition is based on the standard mathematical model of embedded-system behavior used
by the four-variable method. The resulting amalgam retains the graphical notation
and notions of abstraction, encapsulation, separation of concerns, and nonalgorithmic
speci�cation associated with object-oriented approaches, within a mathematically well-
de�ned model contributed by the four-variable method.

There have also been formalizations in Z of the three OMT notations [Spi88,Wor92],
as well as object-oriented extensions to Z. The collection of papers in [SBC92] contains
accounts of both approaches, including a summary of Hall's object-oriented Z speci�ca-
tion style, which is also described in Hall [Hal90].

4.4 A Model for the SAFER Avionics Controller

The SAFER avionics controller described in Section 2.6 exhibits several characteristics
that strongly in
uence the choice of a model for its formalization. The basic function-
ality of the controller requires a representation that captures the mapping from input
and sensor values to outputs. The model must also be able to capture the dependency
of current events on prior events, necessitating the use of a state- or trace-based model,
or other representation with similar facility for preserving values from one \cycle" to

16The graphical environment prototype generates Larch speci�cations [CWB94]. Although current

versions of Larch are not inherently algebraic, the implementation cited supports only algebraic lan-

guages although it is general enough to accommodate most algebraic languages that have a well-de�ned

grammar. It appears that \object model" has replaced the previously used phrase analysis object

schemata (a-schemata) in recent publications [BC95b].

NASA-GB-001-97 47

another. The fact that the controller maintains and updates its own internal status,
including Hand Controller Module (HCM) display and Automatic Attitude Hold (AAH)
status, provides additional motivation for an explicit representation of state. In fact,
the SAFER avionics controller provides a nice illustration of a system that can be quite
naturally modeled as a state machine (see Section 4.3.2), that is, as a model consisting
of a system state and a transition function that maps inputs and current-state val-
ues into outputs and next-state values. Arguably, a variant of the basic state machine
model, such as the A-7 [H+78,Hen80,vS90,Par91,PM91], which is specialized for control
systems, would provide a representation that di�erentiates inputs, outputs, and state
values by explicitly identifying monitored, control, and state variables (see Figure 4.3).
Although the di�erences between these two models are small, the choice between a
basic state machine model and a specialized state machine model illustrates the type
of trade-o� that typically enters into modeling decisions. In this case, the trade-o� is
the relative simplicity of the basic state machine model versus the additional expres-
siveness of the specialized A-7 model, where �ner-grained distinctions among variables
potentially provide a clearer mapping between informal description, requirements, and
the formal speci�cation. On the other hand, the level of description and the (primarily)
pedagogical role of the SAFER example motivate the use of the simpler model presented
here. Nevertheless, the reader is encouraged to consider the similarities between the ba-
sic state machine model developed here and A-7-type models, in particular the notion
of the state transition function de�ned as a control function with monitored (that is,
sensor) and state variables as input and control and state variables as output.

A �nal consideration concerns the representation of time. Since the basic function-
ality of the controller can be captured within a single frame or cycle, there is no need
to reason about the behavior or evolution of the system over time or to introduce the
additional complexity required for an explicit representation of time. The trade-o� here
is the simplicity of the model versus a loss of analytical power. Without an explicit
representation of time, there is no way to explore certain types of properties, including
safety and liveness properties that establish (roughly) that nothing bad ever happens
and something good eventually happens, respectively. For example, without an explicit
representation of time, it would be impossible to demonstrate that an HCM translation
(rotation) command eventually results in thruster selection.17 Although the models
presented in this chapter do not incorporate a notion of time, a time- or trace-based
model could be added, as needed, on top of the state-based model presented here.

Having identi�ed the underlying model as a basic state machine, the next step is
to de�ne the control (transition) function. The transition function for the top-level
controller model is comprised of functions representing its constituent modules and
assemblies. Of interest here are the AAH and thruster selection functions. Thruster
selection maps HCM and AAH commands into an integrated six degree-of-freedom
command that determines the corresponding (thruster) actuator commands. This two-

17Whether the thruster selection is correct with respect to the thruster select logic is an important

property, but not a liveness issue.

48 Chapter 4

phase functionality can be modeled simply as the composition of the two functions,
roughly

selected actuators � integrated command

The AAH model cannot be so simply discharged, because the automatic attitude
hold capability maintains internal state information to implement the AAH control law
and to track whether the AAH is engaged or disengaged and which, if any, of the three
rotational axes are under AAH control. AAH control law is implemented in terms of a
complex feedback loop that monitors inertial reference unit (IRU) angular rate sensors
and temperature sensors (one for each of the three rate sensors), and generates rotation
commands. Although this account is necessarily simpli�ed, it suggests a fairly complex
control system with clearly di�erentiated variable types and a well-de�ned internal state.
The rationale for considering an A-7-type interpretation of a basic state machine model
for the top-level avionics controller applies equally to the AAH. The AAH state machine
model is shown in Figure 4.8.

A closer look at the AAH button transition function further illustrates the type
of issues that invariably arise in developing models for formal speci�cation. The state
transition diagram for this function shown in Figure 4.9 represents the single-click,
double-click engagement protocol described in Section 2.6, where nodes represent AAH
states and arcs represent the two button positions (up or down) and the two operative
constraints (timeout or all three rotational axes removed from AAH control).18

For example, if the AAH is engaged and the AAH pushbutton switch is depressed,
the AAH enters a state (\pressed once") that is exited only when the pushbutton is
released, at which point the AAH transitions to a state that may be exited in one of
two ways: either the 3-axes-o� constraint becomes satis�ed and the AAH is disengaged
or the pushbutton is depressed for a second time and the AAH enters a twilight state
(\pressed twice") prior to button release and disengagement. Several interesting ques-
tions arise with respect to this model, largely because of undocumented behaviors. For
example, the Operations Manual [SAFER94a] doesn't mention the case represented by
the two 3-axes-o� arcs, where the axis-by-axis disabling (resulting from explicit rotation
commands issued while AAH was engaged) e�ectively disengages the AAH. The two op-
tions are either to leave AAH nominally active with all three rotational axes o� or to
explicitly inactivate the AAH. The AAH model presented here re
ects the second option,
which is more straightforward and avoids the possibility of misleading a crewmember
into thinking that the AAH is engaged when in fact all three axes have been disabled.
There are also modeling issues, including those surrounding the representation of the 3-
axes-o� transitions. In the model diagrammed above, the 3-axes-o� transition emanates
only from the \AAH on" and \AAH closing" states, although logically, it can be argued
that 3-axes-o� transitions should also emanate from the \pressed-once" and \pressed-
twice" states. In other words, the model should explicitly re
ect that fact that if AAH

18The diagram actually represents a combination of pushbutton and implied events. For example,

although the 3-axes-o� transition re
ects one or more previous HCM commands, it does not represent

an explicit pushbutton event, such as AAH enable/disable.

NASA-GB-001-97 49

is engaged and all three axes have been disabled, AAH is terminated. The rationale
for the given model is that the behavior of the resulting system is cleaner if the \AAH
o�" state is entered only after the pushbutton switch is released (\up"). Otherwise the
button would be depressed and cause an immediate transition to \AAH started" on the
next pass. Similarly, although it is arguably preferable to omit the 3-axes-o� transition
from \AAH closing" and allow the double click to complete, if the crewmember forgets
the second click, another ill-de�ned situation results.

So far, the discussion has focused on modeling SAFER's functionality rather than
its physical components. Although many of SAFER's physical features fall below the
level of abstraction chosen for the formalization, certain features such as the thrusters
must be modeled. SAFER has 24 thrusters arranged in four groups (quadrants) of
six thrusters each. Consistent with the intermediate level of detail chosen to make the
guidebook example easier to understand, the thrusters are modeled by enumerating each
of the 24 thrusters by name and providing a function that maps a thruster name to a
full thruster designator. The thruster designator is a triple consisting of elements that
represent the direction of acceleration yielded by �ring the thruster, its quadrant, and
its physical location as shown in Figure C.3. For example, thruster F1 would be mapped
to the designator (FD, 1, RR) and thruster L3R would be mapped to the designator
(LT, 3, RR). Possible values for the three designator components are as follows:

� Direction: up, down, back, forward, left, right

� Quadrant: 1, 2, 3, 4

� Location: forward, rear

It is instructive to consider a more abstract model of the SAFER thrusters. For example,
a considerably higher-level model might simply provide primitive (uninterpreted) ele-
ments called thrusters, some of which accelerate up, others down, back, forward, right,
or left. These distinctions are disjoint, that is, a thruster accelerates in exactly one
direction and there are no other kinds of accelerations. The exact number of thrusters
and their physical positions with respect to quadrant and location are irrelevant at this
level of abstraction, although it would certainly be possible to specify an upper bound
on the number of thrusters. The advantage of this highly abstract model is that it is
not obscured by (arguably irrelevant) detail and it is general enough to be applicable
to new designs or future modi�cations.

50 Chapter 4

 AAH
Transition Function

A A H
 Control Law

Rotation Command

AAH Engage ButtonPropulsion Sensors
IRU Sensors

Control Function

A

A

H

S

t

a

t

e

 AAH Pushbutton
 Transition Function

Figure 4.8: AAH Control System State-Update and Actuator Functions.

NASA-GB-001-97 51

up

up

down

down

down

up

down

up

off

AAH

AAH
on

pressed
twice

AAH

started

down

once
pressed

AAH

up

up

down

closing

timeout

off
3 axes 3 axes

off

Figure 4.9: Labeled AAH Pushbutton State Transition Diagram.

52 Chapter 4

Chapter 5

Formal Speci�cation

A formal speci�cation is a characterization of a planned or existing system expressed in
a formal language. The characterization typically consists of a collection of axioms and
de�nitions whose meaning and consequences are determined by the precise mathematical
basis of the formal language and its rules of inference. In this context, \consequences"
denotes all the formulas that can be derived from the axioms and de�nitions using for-
mal deduction (as prescribed by the inference rules). These derivations are also referred
to as proofs, and the set of formulas constitutes the theory de�ned by the speci�cation.
The act of formalizing a speci�cation does not necessarily make it relevant, coherent,
or true. There are several ways to increase the certainty that a speci�cation expresses
the intentions of its author and that what it says is true, including|in ascending order
of rigor|parsing, typechecking, animating, or executing all or part of the speci�ca-
tion, well-formedness checking for de�nitions1, demonstrating consistency for axiomatic
speci�cations2, and developing and proving theorems entailed by the speci�cation. Of
course, there is no way to completely guarantee that a formal speci�cation is correct
or accurately represents reality; the various checks and tools cited here can reduce, but
never totally eliminate, the possibility of human error. Nevertheless, there are very real
bene�ts to be gained from formal speci�cation, bene�ts that are not diminished by the
impossibility of de�nitive correctness.

This chapter focuses exclusively on formal speci�cation, leaving issues of formal
analysis and proof to Chapter 6. The discussion covers speci�cation languages and
styles, as well as the checks and tools mentioned above with the exception of theorem
proving, which, as already noted, is deferred until Chapter 6. The discussion also touches
on the utility of formal speci�cation in the absence of formal proof and continues the
ongoing example with a partial speci�cation of SAFER, using the model developed at
the end of Chapter 4.

1That is, assuring conservative extension; see Section 5.1.2.9 for a discussion of this and related

topics.
2For example, exhibiting a model; see Section 6.1.1.

53

54 Chapter 5

5.1 Formal Speci�cation Languages

A formal language consists of a collection of symbols drawn from an alphabet and a set
of syntactic rules that govern which combinations of symbols constitute valid expres-
sions in the language. In purest form, a formal language and the rules for manipulating
it are referred to as a (mathematical) logic. The propositional and predicate calculi are
examples of this type of formal system. Although some formal speci�cation languages
use pure logics, many enrich the underlying logic with modern programming language
concepts and constructs such as type systems, encapsulation, and parameterization,
thereby increasing the expressiveness of the formal language while retaining the precise
semantics of the underlying logic. As these remarks suggest, the distinction between
a speci�cation language and a programming language is somewhat blurred. The same
can be said for their respective artifacts. Although a program can be viewed as a
speci�cation, a speci�cation is typically not a program and often contains such noncom-
putational constituents as high-level constructs and logical elements (e.g., quanti�ers).
The basic di�erence is one of focus: a program speci�es completely how something is to
be computed, whereas a speci�cation expresses constraints on what is to be computed.
As a result, a speci�cation may be partial or \incomplete" and still be meaningful, but
an incomplete program is generally not executable [Win90, p. 8] [OSR93a, p. 2].

There is a wide variety of formal speci�cation languages, far too many to be con-
sidered here. Rather than focus on a representative sample of these languages, the
discussion concentrates instead on general characteristics and features of speci�cation
languages, the rationale being that discussion of foundational issues, general features
of, and desiderata for formal speci�cation languages will provide the reader with back-
ground and access to a wide range of formal speci�cation languages. Although mecha-
nized support for formal systems is not discussed, one of the additional bene�ts of a high
degree of formalization is that speci�cations written in a formal language are amenable
to mechanical analysis and manipulation. Most formal speci�cation languages are sup-
ported by mechanized syntax analysis tools, and many also enjoy some level of mecha-
nized semantic analysis, as well as deductive apparatus in the form of theorem provers
and proof checkers. Although most systems are designed around a particular speci�ca-
tion language and its proof rules, there are also generic systems such as Isabelle [Pau88]
that support a variety of logics and notations. Volume I of this guidebook [NASA-95a]
includes an extensive list of formal methods tools, as well as a description of approxi-
mately 15 of the most widely used of these systems.

5.1.1 Foundations
3

As noted earlier, a formal speci�cation language is grounded in a mathematical logic.
There are, of course, a wide variety of logics: simple propositional logics (either classical
or intuitionistic), equational logics, quanti�cational logics, model and temporal logics,

3The material in this section is based largely on a discussion in [Rus93b].

NASA-GB-001-97 55

set theory, and higher-order logic, although this by no means exhausts the possibilities.
These and other logics were developed by mathematicians to explore issues of concern
to them. As Rushby [Rus93b, p.214] notes:

\Initially, those concerns were to provide a minimal and self-evident foun-
dation for mathematics; later, technical questions about logic itself became
important. For these reasons, much of mathematical logic is set up for
metamathematical purposes: to show that certain elementary concepts al-
low some parts of mathematics to be formalized in principle, and to support
(relatively) simple proofs of properties such as soundness and completeness."

On the other hand, formal speci�cation languages are developed primarily to be used,
that is, to formalize requirements, designs, algorithms, and programs and to provide an
e�cient and e�ective basis for reasoning about these artifacts and their properties.
Predictably, the languages developed by mathematicians are not necessarily well-suited
to the needs of those engaged in formal speci�cation and analysis. This is particularly
true when mechanization of speci�cation and analysis is considered.

Although there are specialized uses for some of the logics mentioned above|for ex-
ample, a propositional or modal logic can provide a basis for e�cient determination
of certain properties of �nite state machines|the logical foundation for an expressive,
general-purpose speci�cation language is generally either axiomatic set theory or higher-
order logic. Historically, these approaches were developed in response to Russell's Para-
dox, which exposed a fundamental inconsistency in Frege's logical system on the eve of
its publication and frustrated Frege's attempts to provide a consistent foundation for the
whole of mathematics.4 Axiomatic set theory avoids contradictions by restricting the
rules for forming sets|basically, new sets may be constructed only from existing sets.
There are di�erent axiomatizations, characterizing distinct set-theories; the best known
of these is called Zermelo-Fraenkel or simply ZF, after its founders [FBHL84, Hal84].
ZF contains eight axioms, all of which express simple, intuitive truths about sets. ZF
set theory provides the logical framework for several well-known speci�cation languages,
including Z [Spi88] and Verdi, the language of the Eves system [CKM+91]. The main
issues surrounding the use of axiomatic set theory as the basis for a speci�cation lan-
guage are unconstrained expressiveness, the di�culty of providing semantic checking for
an inherently untyped system, and the challenge of providing e�cient theorem proving
for a system in which functions are inherently partial.

In the context of logics, the su�x \-order" refers to the elements over which the
logic permits quanti�cation. The standard progression is as follows. The propositional

4Actually, Frege, Cantor, and Dedekind were greatly disillusioned by the contradictions that plagued

their set theoretical foundation for the real numbers, continuity, and the in�nite and quit the �eld, leav-

ing the development of a consistent set theory to others. The intellectual history of this period, as well as

the mathematics, is fascinating, but well beyond the scope of the guidebook. Rushby [Rus93b, pp. 254-

5] o�ers a brief sketch of the issues based on material in [Hat82,Lev79,FBHL84,Sho78a,And86,BP83,

vBD83,Haz83]. The last chapter of Bell [Bel86] provides an equally brief history of the personalities as

well as the mathematics.

56 Chapter 5

calculus does not allow quanti�cation and is e�ectively \zero-order." The predicate
calculus, which allows quanti�cation over individuals, is referred to as \�rst-order" logic.
Similarly, \second-order" logic provides quanti�cation over functions and predicates on
individuals, and \third-order" provides quanti�cation over functions and predicates on
functions. The enumeration continues up to !-order, which allows quanti�cation over
arbitrary types and is therefore generally equated with type theory or higher-order logic.

Axiomatic set theory assumes a
at universe; individuals, sets, sets of sets, . . . , are
undi�erentiated with respect to quanti�cation, which is inherently �rst-order. Further-
more, axiomatic set theory admits only two predicates: (2 and =).5 In type theory,
the universe is ordered with respect to a type hierarchy and quanti�cation must respect
the type distinctions. In other words, quanti�ers apply to typed elements and the type
distinctions must be consistently maintained throughout the scope of the quanti�er.

In highly simpli�ed terms, simple type theory avoids the logical paradoxes by ob-
serving a strict type discipline that prevents paradoxical circular constructions (also
called impredicative de�nitions).6 The simple theory of types has been used as the ba-
sis for several formal methods and theorem proving systems, including HOL [GM93],
PVS [ORSvH95], and TPS [AINP88]. As a foundation for formal speci�cation lan-
guages, type theory o�ers several advantages, such as strong, mechanized typechecking

that confers early and e�ective error detection; expressive power of quanti�cation and
higher-order constructions; and the potential for mechanized theorem proving facilitated
by the total functions that typically underlie simple type theory.

5.1.2 Features

The previous discussion of mathematical foundations suggests that the mathematical
basis of a speci�cation language �gures importantly in determining such features as
expressiveness and mechanizability. This section brie
y considers expressiveness and
other basic features of speci�cation languages. As noted previously, mechanization
issues generally lie outside the scope of this guidebook, which is aimed at the practitioner
rather than the provider of formal methods tools or systems.7

5Although ZF reconstructs functions and predicates within set theory as sets of pairs, this set the-

oretic approach is arguably less suitable for formal methods because it tends to be less expressive and

less easily mechanized.
6The account presented here is very sketchy. Rushby [Rus93b, pp. 270-278] presents a somewhat

more thorough discussion, based on material in Andrews [And86], Hatcher [Hat82], Benacerraf and

Putnam [BP83], van Bentham and Doets [vBD83], and Hazen [Haz83]. Barwise and Etchemendy [BE87]

have published a very readable analysis of the semantic paradox known as \The Liar," using an extension

of ZF set theory.
7See, for example, Rushby [Rus96], which touches on the implications of speci�cation language design

for automated deduction while advocating an integrated approach to automated deduction and formal

methods.

NASA-GB-001-97 57

5.1.2.1 Explicit Semantics

To provide a basis for mathematically well-de�ned, credible speci�cations, as well as a
standard framework for understanding the speci�cations, a speci�cation language must
itself have a mathematically secure basis. Ideally, the language should have a complete
formal semantics, although languages built on standard logics without signi�cant exten-
sions typically don't have or need a completely formal semantics. On the other hand,
speci�cation languages that are not based on standard logics or that employ novel or
nonstandard constructions should provide a formal semantics that has undergone some
form of peer review or collegial scrutiny. Spivey's formal semantics for Z [Spi88] is an
example of this kind of formal semantic account.

5.1.2.2 Expressiveness

As noted earlier, �rst-order predicate calculus with equality is generally considered
the minimum foundation for a reasonably expressive speci�cation language. On the
other hand, more restricted bases may be appropriate for particular applications and
more powerful bases (such as set theory and higher-order logic) are desirable for most
applications. Of course, there are several dimensions to the notion of expressiveness,
including
exibility, versatility, and convenience and economy of expression. Some of
these derive from other features; for example, a rich type system facilitates more succinct
speci�cation since much of the speci�cation can be embedded in the types, as illustrated
in the two versions of the claim, c1 (below), that the sum of two even integers is even.
The property of being an even integer is characterized by the predicate even?.

x, y: VAR int

c1: CLAIM even?(x) AND even?(y) IMPLIES even?(x + y)

Alternatively, the constraint may be embedded in the type, so that variables x and y
are declared to be elements of the type consisting (only) of even integers.

x, y: VAR fz: int | even?(z)g
c1: CLAIM even?(x + y)

Similarly, the availability of familiar programming language datatypes and construc-
tions confers considerable convenience and clarity when dealing with such structures as
arrays, records, lists, and sequences. There are also trade-o�s; for example, in the case
of executable speci�cation languages, �niteness constraints imposed by executability
can compromise expressiveness.

5.1.2.3 Programming Language Datatypes and Constructions

Most speci�cation languages support at least some of the familiar programming language
datatypes, such as records, tuples, and enumerations, as well as constructions that

58 Chapter 5

update these structured types.8 Some also support abstract data types, including \shell"
mechanisms for introducing recursively de�ned abstract data types, such as lists and
trees, and similar mechanisms for inductively de�ned types and functions.

5.1.2.4 Convenient Syntax

There are basically two aspects to the question of syntactic convenience: familiarity and
ease of expression, and utility for documentation and review. The latter is somewhat
less important if the language is used in an environment that includes typesetting for
documentation. The former hinges on whether the language accommodates the user
{ for example, providing in�x operators for standard arithmetic operations and famil-
iar forms of function application including the use of delimiters and punctuation { or
whether the user must accommodate the language, adjusting, for example, to Lisp-style
pre�x notation.

5.1.2.5 Diagrammatic Notation

Diagrammatic notation, including graphic notations as found, for example, in
Statemate [H+90], and tabular notations, as found in Parnas's \four variable
method" [vSPM93], SCR [HJL95], and RSML [LHHR94], provide a speci�cation for-
mat that can be readily understood and easily communicated. These notations typically
support an underlying methodology for speci�cation and re�nement. The challenge is
to provide the bene�ts of a diagrammatic style with su�cient underlying formality to
support a range of formal analysis techniques.

5.1.2.6 Strong Typing

Strong typing is often considered a signi�cant asset in speci�cation languages as well
as in programming languages. The di�erence is that speci�cation languages can have
much richer type systems than programming languages because the types do not have to
be directly implementable.9 The bene�ts of strong typing include economy and clarity
of expression, a discipline that encourages precision, and an e�ective basis for mecha-
nized typechecking. A typechecker is a program that checks that the type discipline is
maintained throughout the speci�cation; entities must match their declarations and be
combined only with other entities of the same (or a compatible) type. Predictably, the
actual utility of the typechecker (for detecting faults, inconsistencies, and omissions)
depends both on the logical foundation underlying the speci�cation language and on
the diligence and skill of its implementors. For example, it is di�cult to provide strict

8Updating or constructing new values of structured types from existing values in a purely functional

way (analogous to assignment to array elements or record �elds in imperative programming languages)

is also referred to as overriding.
9There are exceptions, such as the abstract or virtual class constructs in C + +, but the generalization

is nevertheless a useful one.

NASA-GB-001-97 59

typechecking for languages based on set theory without sacri�cing some of the
exibil-
ity of these languages because set theory doesn't provide an intrinsic notion of type.
On the other hand, type theory (higher-order logic) is an inherently typed system, and
languages based on higher-order logic readily support strict typechecking.

Nevertheless, there are certain caveats. Lamport has argued against the unques-
tioned use of typed formalisms, noting that types are not harmless { they potentially
compromise the simplicity and elegance of mathematics and complicate formal systems
for mathematical reasoning [Lam95]. Strongly typed languages that do not provide
overloading and type inference can be notationally complex and frustrating to use. For
example, in many speci�cation languages, addition on integers is often a di�erent func-
tion from addition on the reals, but by \overloading" the symbol + and exploiting
context to \infer" the correct addition function, the burden of the complexity falls on
the system rather than on the user. The sophistication of type inference mechanisms
varies; systems based on higher-order logic that provide rich type and modularization
facilities require particularly sophisticated type inference mechanisms for e�ective user
support.

If a rich type system is supported by mechanized typechecking integrated with the-
orem proving so that typechecking has access to theorem proving, the expressiveness of
the language can be further enhanced. For example, much of the expressive power of
the PVS language is achieved through the use of predicate subtypes where a predicate
is used to induce a subtype on a parent type. However, the introduction of subtypes
makes typechecking undecidable, requiring the typechecker to generate proof obligations
(known as Type-Correctness Conditions (TCCs)) that must be discharged before the
speci�cation can be considered type correct.10

5.1.2.7 Total versus Partial Functions

A total function maps every element of its domain to some element in its range, whereas
a partial function maps only some elements of its domain to elements of its range,
leaving others unde�ned. While most traditional logics incorporate the assumption
that functions are total, partial functions occur naturally in the kinds of applications
undertaken with formal methods. Given that most logics assume that functions are
total, providing a logical basis for a speci�cation language that admits partial functions
tends to be problematic. Although some recent logics (including those of VDM [Jon90],
RAISE [Gro92], three-valued logics [Urq86,RT52,Res69,KTB88], and Beeson's logic of
partial terms [Bee86]) allow partial functions, they typically formalize partial functions

10The standard PVS example is that of the division operation (on the rationals), which is speci�ed

by /:[rational, nonzero rational ! rational] where nonzero rational:type = fx:rational |

x 6= 0g speci�es the nonzero rational numbers. The de�nition of division constrains all uses of the

operation to have nonzero divisors. Accordingly, typechecking a formula such as x 6= y � (y-x)/(x-y)

< 0 generates the TCC x 6= y � (x-y) 6= 0 to ensure that the occurrence of the division operation

is well-typed. Note the use of the \context" (x 6= y) as an antecedent in the TCC. Most (true) TCCs

generated in the PVS system are quickly and automatically discharged by the prover during typechecking

without user intervention.

60 Chapter 5

at the expense of complicating theorem proving for all speci�cations, even those that
do not involve partiality. On the other hand, treating all functions as total in languages
with only elementary type systems also has undesirable consequences, in particular, the
awkwardness of having to specify normally unde�ned values (for example, having to
specify division by zero). Total functions are less problematic in languages that support
subtypes and dependent types, as illustrated previously by the PVS speci�cation of
division on the rationals as a total operation on the domain consisting of arbitrary
numerators and nonzero denominators, where the latter was de�ned by the predicate
subtype, nonzero rational.

5.1.2.8 Re�nement

Speci�cation languages that support re�nement provide an explicit formal basis for the
hierarchical mappings used to verify successive steps in the development from abstract
requirements and high-level speci�cation to code. Although most speci�cation languages
allow re�nement to be expressed, if somewhat painfully, explicit support for re�nement
confers a distinct advantage for describing the systematic and provably correct \imple-
mentation" of a higher-lever speci�cation by a lower-level one.11

5.1.2.9 Introduction of Axioms and De�nitions

In the introduction to this chapter, it was noted that a speci�cation typically con-
sists of a collection of axioms and de�nitions. Axioms can assert arbitrary properties
over arbitrary (new or existing) entities. De�nitions are axioms that are restricted to
de�ning new concepts in terms of known ones. This di�erence has important impli-
cations; axioms can introduce inconsistencies, whereas well-formed de�nitions cannot.
Speci�cation languages di�er with respect to facilities for introducing axioms and def-
initions, including the rigor with which they guarantee that axioms are consistent and
de�nitions well-de�ned. Some speci�cation languages do not allow the introduction of
axioms. Although this avoids the problem of inconsistency, it can create others. For
example, axioms are particularly useful for stating assumptions about the environment
and the inability to de�ne such constraints axiomatically can present a considerable
drawback. On the other hand, the ability to introduce axioms should always be o�-
set by a method (and, ideally, mechanical support) to demonstrate their consistency.
While some languages prohibit arbitrary axiomatizations, others o�er little or no as-
surance that de�nitions are well-formed, that is, constructed according to a de�nitional
principle appropriate to the given (speci�cation) language. The role of this principle is
to ensure what is referred to as a conservative extension to a theory.

\A theory A is an `extension' of a theory B if its language includes that
of B and every theorem of B is also a theorem of A; A is a `conservative'

11Re�nement is a topic that is not covered in this volume. A representative sample of the work in

this area, including both model-based and algebraic approaches, may be found in the proceedings of

recent workshops on re�nement, including [dBdRR89,MW90], as well as in [BHL90].

NASA-GB-001-97 61

extension of B if, in addition, every theorem of A that is in the language of
B is also a theorem of B [Rus93b, p. 58]."

The richness of the underlying logic, the strength of the de�nitional principle, and
the degree and power of the associated mechanization determine the nature and extent
of the concepts that may be de�ned in a language. Recursive de�nitions are an exam-
ple. The problem with recursive de�nitions is that they may not terminate on certain
arguments, that is, they may be partial rather than total. There are various strategies
for extending a de�nitional principle to recursive de�nitions. One strategy is to provide
a �xed template for recursive de�nitions along with a meta-proof that establishes that
all correct instantiations of the template terminate. The strategy used in PVS is to
prove well-foundedness using a technique based on a \measure" function whose value
decreases across recursive calls and is bounded from below.12 The classic example, fac-
torial, is de�ned in PVS as follows, where the MEASURE clause speci�es a function to be
used in the termination proof. In this case, the measure is simply the (generic) identity
function supplied by the PVS prelude.

factorial(x:nat): RECURSIVE nat =

IF x = 0 THEN 1 else x * factorial(x-1) ENDIF

MEASURE id

This de�nition generates a type well-formedness condition that must be discharged
before the de�nition is considered type correct. The condition states that for all natural
numbers, x, either x = 0 or x - 1 is strictly less than x.

Another type of de�nitional principle, called a \shell", provides a compact way to
specify new structured types in terms of constructors, recognizers, and accessors that
respectively construct new elements of the type, recognize bona �de (sub)elements of the
type, and access (sub)elements.13 This concise speci�cation is expanded schematically
to generate the axioms necessary to establish the consistency of the de�nition, and
(in some cases) to provide other useful constructs such as induction schemes. The
consistency of the axioms is assured by a meta-proof on the shell principle. Boyer
and Moore make extensive use of the shell principle, axiomatizing fundamental objects
including the natural numbers, literal atoms, and ordered pairs, as well as new types.
PVS uses a similar, but somewhat more sophisticated shell mechanism to de�ne abstract
data types [Sha93]. The ubiquitous example of a pushdown stack can be very concisely
speci�ed in PVS.

stack[t: TYPE]: DATATYPE

BEGIN

empty: emptystack?

push(top: t, pop: stack): nonempty stack?

END stack

12The template approach is more restrictive, but easier to implement; it does not require theorem

proving to establish the well-de�nedness of a de�nition as does the measure function strategy.
13The name \shell" was �rst introduced by Boyer and Moore [BM79, pp. 35-40], who note that their

shells were inspired by Burstall's \structures" [Bur69].

62 Chapter 5

empty and push are the constructors, empty stack? and nonempty stack? are the
recognizers for the corresponding constructors, and top and pop are the accessors for
nonempty stacks. When stack is typechecked, a new PVS theory, stack adt, is gener-
ated that consists of approximately a page and a half of PVS and provides the axioms
and induction principles to ensure that the datatype is well-formed.

The distinction between de�nitional versus axiomatic speci�cation is revisited in
Section 5.2, where the implications of the two styles are discussed. The point of this
somewhat long excursion has been to underscore the utility of both approaches; pow-
erful de�nitional principles and arbitrary axiomatizations each have a role in formal
speci�cation, and a speci�cation language that provides both accompanied by suitable
mechanization is a potentially more productive tool than a language that e�ectively
supports one approach to the exclusion of the other.

5.1.2.10 Encapsulation Mechanism

Mechanisms that provide the ability to modularize and encapsulate are as important
in speci�cation languages as they are in programming languages. Mechanisms that not
only support modularization, but also allow parameterization of the modules provide
even greater utility because they encourage reuse. For example, a sorting module can
be de�ned generically and parameterized by the type of entity to be sorted and the
ordering to be used, thereby allowing a single module to be (re)used to sort entities of
di�erent types according to di�erent ordering relations. In PVS, such a module (called
a THEORY) might appear as follows, where the idea is to sort sequences of type T with
respect to the ordering relation <=. The signature of this relation indicates that <= takes
two elements of type T and returns a Boolean value.

sort[T:TYPE, <=: [T,T -> bool]] : THEORY

To ensure that instantiations are appropriate, for example, that the values provided to
the ordering relation in fact constitute an appropriate ordering, semantic constraints
are associated with the instantiations. There are various mechanisms for accomplishing
this, including attaching assumptions to the formal parameters of the module, as in
PVS. For example, it may be useful to constrain <= to be a preorder (that is, re
exive
and transitive).14

sort[T:TYPE, <=: [T,T -> bool]: THEORY

BEGIN

ASSUMING

pre order: ASSUMPTION pre order?(<=)

ENDASSUMING

END sort

This assumption must be discharged whenever the module sort is instantiated.

14
pre order? is a predicate de�ned in the PVS prelude [OSR93a].

NASA-GB-001-97 63

5.1.2.11 Built-in Model of Computation

Most applications of formal methods involve reasoning about computational processes.
In the discussion of discrete domain models (Section 4.3), it was noted that some spec-
i�cation languages have a built-in model of computation, for example, in the form of
a process algebra as in LOTOS [ISO88] or certain programming-language construc-
tions, such as the concurrency mechanisms o�ered in Gypsy [GAS89]. If a model of
computation is present in a language, it is important to ensure that the computational
model is suitable for the application at hand. For example, a study of synchronization
algorithms cannot very well be performed in a notation based on synchronous com-
munication [Rus93b, p. 162]. On the other hand, many speci�cation languages do not
incorporate a model of computation, or incorporate only a very elementary model, such
as functional composition. Using functional application and composition, almost any
logic can represent sequential computation. Languages such as PVS that are based
on classical higher-order logic are typically rich enough to specify more complex com-
putations, such as those involving imperative, concurrent, distributed, and real-time
algorithms. For example, important properties of distributed systems can often be
described and analyzed using recursive functions [LR93b].

5.1.2.12 Executability

Executability provides a pragmatic approach to exploring and debugging speci�cations,
and to developing and evaluating test cases. Further discussion of executability may be
found in Sections 5.4 and 6.3.

5.1.2.13 Maturity

The advantages of a mature speci�cation language are similar to those of a mature
programming language: documentation is reasonably accessible and complete, tool sup-
port is available and generally reliable, there is a reasonably large body of associated
literature and applications, and there is some measure of standardization so that a
speci�cation written in the language provides an unambiguous and generally accepted
description.

5.2 Formal Speci�cation Styles

Speci�cation style has various implications, ranging from readability to ease of proof.
As Srivas and Miller note in reference to the formal veri�cation of a commercial mi-
croprocessor (arguably the most ambitious microprogram veri�cation undertaken to
date) [SM95a, p. 31]: \One of the more important lessons learned during this project
was to more carefully consider the trade-o�s between . . . styles of speci�cation." Sri-
vas and Miller are speci�cally referring to a constructive versus a descriptive style of

64 Chapter 5

speci�cation, also known as model-oriented versus property-oriented, respectively.15 A
constructive or model-oriented style is typically associated with the use of de�nitions,
whereas a descriptive or property-oriented style is generally associated with the use of
axioms. For example, consider the mod function, which returns the remainder when one
natural number is divided by another. mod can be speci�ed constructively by de�ning a
recursive function that returns the appropriate value, or descriptively by axiomatizing
certain of its number theoretic properties [SM95a, p. 28]. The descriptive style encour-
ages underspeci�cation|specifying less rather than more, and doing so as abstractly as
possible|thereby avoiding the tendency to focus on how a concept is realized rather
than simply what is required of it, whereas the constructive style tends to promote
overspeci�cation|specifying more rather than less and doing so in greater detail and
speci�city than necessary|thereby allowing an implementation bias to creep in ear-
lier than warranted. On the other hand, descriptive or axiomatic speci�cations can
introduce inconsistencies and can be less easily read and understood by the uniniti-
ated reader than constructive speci�cations. Constructive speci�cations also tend to
correspond more naturally to the procedural requirements used in many applications.
Ultimately, the trade-o�s between the two styles must be arbitrated by the application
and by the options provided by the speci�cation language used. Again, Srivas and
Miller's experience is instructive.

\It became evident that [the descriptive style was] in many ways a prefer-
able style of speci�cation . . .more readable, simpler to validate, and . . . closer
to what a user wanted to know. . . . Using this style would have made spec-
ifying the core set of 13 instructions much simpler. However, doing so also
would have made it easier to introduce inconsistencies in the speci�cation.
. . . The declarative [sic, that is, descriptive] style of speci�cation is better-
suited for reasoning with complex instruction sets [SM95a, pp. 30-31]."

Many applications can bene�t by the judicious use of both styles. One approach is to use
a property-oriented axiomatization as a top-level speci�cation and introduce a suitable
number of speci�cation layers between the property-oriented requirements statements
and increasingly detailed, (provably consistent) model-oriented descriptions, possibly
culminating in an implementation-level speci�cation. The idea is to establish that the
implementation satis�es the requirements. Few analyses elaborate multiple layers|the
example documented in [BHMY89,Bev89] and summarized in Section 5.3 is a notable
exception; for most applications, more cost-e�ective strategies focus on key properties
early in the life cycle.

There are other considerations that may be viewed as stylistic, including the trade-
o�s between a functional style of speci�cation versus one in which the notion of state is
explicitly represented, for example, using \Hoare sentences" to express pre- and post-

15Other terminology is also found in the literature; for example, the term \prescriptive" is sometimes

used to refer to a constructive style of speci�cation and \declarative" to a descriptive style.

NASA-GB-001-97 65

conditions on a state.16 Some speci�cation languages support both styles, while others
support only an implicit notion of state. If the notion of state is implicit, the model of
computation may be more or less explicit. For example, if the speci�cation of a control
system must support the analysis of properties characterizing the evolution of the sys-
tem over time, the (monitored, controlled, and state) variables are typically represented
as traces, that is, functions from \time" to the type of value concerned, where time
represents a frame, cycle, or iteration count. Purely functional speci�cations are in-
trinsically closer to ordinary logic and therefore tend to support more e�ective theorem
proving than speci�cations that involve state. In general, speci�cations involving state
tend to be unnecessarily constructive for earlier life cycle applications; functional style
speci�cations are often adequate for the requirements and high-level design phases.

5.3 Formal Speci�cation and Life Cycle

One approach to integrating formal speci�cation with system development is to con-
struct a hierarchy of speci�cations at di�erent levels of abstraction, each level corre-
sponding to a di�erent phase of the software life cycle and each level elaborating or
\re�ning" the immediately preceding level. Using formal proof to establish that each
level of the design is a correct implementation of its immediate ancestor, it is possible
to develop a proof chain that automatically demonstrates that required properties are
satis�ed at all levels { from the requirements speci�cation down through the imple-
mentation (code level). Such proofs typically use a mapping function that relates the
objects of one level with the objects of the immediately preceding level and prove that
the mapping is preserved through all possible executions. Needless to say, hierarchical
speci�cation over multiple levels is an arduous and costly undertaking. The \CLI short
stack" [Bev89] { a mechanical veri�cation of a multilevel system from an applications
program in a high-level language down through the gate-level design of a microprocessor
with intermediate levels including a compiler, assembler, and linker { exempli�es this
approach. The LaRC veri�cation of a reliable computing platform for real-time control
is another of the few extant examples [BDH94].

Formal speci�cation is typically most cost-e�ective early in the life cycle of a system.
This is true for several reasons, notably the e�ectiveness of conventional veri�cation and
validation activities later in the life cycle versus earlier, when there is an acknowledged
dearth of e�ective strategies and tools, and the di�culty of formal speci�cation during
the later life cycle, in the context of highly detailed, implementation-speci�c models.
This rationale dovetails nicely with the largely pragmatic considerations that have fo-
cused most applications of formal methods on critical or key properties rather than on
\total correctness." As a result, formal speci�cation is most productively used as an

16As an antidote to then-current program veri�cation approaches that generated veri�cation condi-

tions (VCs) from programs annotated with logical assertions, yielding VCs that were di�cult to map

back to the original program (and the user's intuition), Hoare extended the logic to include program

elements, thereby allowing the user to reason directly about programs [Hoa69].

66 Chapter 5

integral part of the iterative development of requirements and high-level design, rather
than as a one-time, benedictory activity at the end of the process.

5.4 The Detection of Errors in Formal Speci�cation

There are several potential sources of error in a formal speci�cation:

� It can say too little or underspecify, that is, be incomplete

� It can say too much or overspecify, that is, be overly prescriptive, thereby unnec-
essarily constraining later phases of the life cycle

� Or, it can be wrong, that is, it can be internally inconsistent or it can specify
something anomalous or unintended.

Overspeci�cation is di�cult to detect mechanically and typically requires considerable
experience to recognize and avoid.17 The other faults are generally more amenable to
the types of fault detection discussed below. Including formal proof, there are basically
�ve regimens for detecting anomalies in a speci�cation. The last four of these can be
e�ectively mechanized and typically occur in the order given, since there is no point in
attempting proofs on a speci�cation that is not syntactically and semantically correct.
By the same token, there is no point in checking for semantic anomalies in a speci�cation
that is not syntactically well-formed. On the other hand, each of these techniques has
a particular utility, and an integrated approach that exploits the strength of each is
undeniably the most e�ective. In some cases, this integration is inherent in a system,
for example, cooperating decision procedures in a theorem prover, or the tight coupling
of a typechecker and a proof checker to provide strict typechecking in the presence of non
trivially decidable properties. In other cases, the integration is achieved by judicious
use of available techniques, for example, \prototyping" a potentially di�cult and costly
proof by using model checking, simulation, or animation to examine a �nite case before
attempting the more general proof with a theorem prover or proof checker. In any
case, the utility of the fault-detection techniques discussed below can be signi�cantly
enhanced by exploiting the potential synergy created by their judicious combination.
Inspection: Inspections run the gamut from informal peer review to well-de�ned, for-
malized procedures. The Fagan-style inspections discussed in Section 3.2 are among the
most frequently used quasi-formal inspections. In theory, these manual inspections can
detect all the error types noted above, although in practice, manual inspections are not
as e�ective as mechanized tools in detecting subtle or deep-seated anomalies, such as
logical inconsistencies and (unintended) implications, or in consistently locating seman-
tic or even syntactic errors in speci�cations. Nevertheless, Fagan-style inspections and

17Jones characterizes a notion of overspeci�cation or implementation bias for constructively de�ned

speci�cations. Brie
y, a speci�cation is biased with respect to a given set of operations \if there exist

di�erent elements of the [underlying] set of states which cannot be distinguished by any sequence of the

operations." [Jon90, pp. 216-219].

NASA-GB-001-97 67

other similarly exacting inspection methods can e�ectively complement formal methods,
and vice versa. The AAMP5 microprocessor project illustrates this point nicely. Miller
and Srivas note the surprising

\extent to which formal speci�cations and inspections complemented
each other. The inspections were improved by the use of a formal nota-
tion, reducing the amount of debate over whether an issue really was a
defect or a personal preference. In turn, the inspections served as a useful
vehicle for education and arriving at consensus on the most e�ective styles
of speci�cation. This is re
ected in . . . the lower number of defects recorded
in the later inspections [MS95, p. 9]."

As this quote suggests, the symbiotic relationship between formal methods and conven-
tional inspection techniques provides a natural medium for technology transfer.

Parsing: Parsing is a form of analysis that detects syntactic inconsistencies and anoma-
lies, such as misspelled keywords, missing delimiters, or unbalanced brackets or paren-
theses. Parsing guarantees (only) that a speci�cation conforms to the syntactic rules of
the formal speci�cation language in which it is written.

Typechecking: Typechecking is a form of analysis that detects semantic inconsis-
tencies and anomalies, such as undeclared names or ambiguous types. As noted in
Section 5.1.2, formal speci�cation languages based on higher-order logic admit e�ec-
tive typechecking, while in general, those based on set theory do not. When available,
strict typechecking is an extremely e�ective way of determining whether a speci�cation
makes semantic sense. Again as noted in Section 5.1.2, the type system of a speci�cation
language may not be trivially decidable, in which case typechecking is similarly unde-
cidable and proof obligations must be generated and discharged before the speci�cation
is considered typechecked.

Execution (Simulation/Animation): Direct execution, simulation, and animation
o�er further options for detecting errors in a speci�cation. If a formal speci�cation
language is directly executable, or contains a directly executable subset, execution and
animation can be accommodated in the same formally rigorous context in which the
speci�cation is developed. If not, the formal speci�cation must be reinterpreted into
high-level, dynamically executable program text that bears no formal relation to the
original speci�cation (see [MW95, Chapter 5] for an example of the latter). Some lan-
guages o�er both, that is, a directly executable subset, as well as the option of user- or
system-de�ned program text to drive animation of nonexecutable parts of the speci�ca-
tion. The concrete representation of algorithms and data structures required by most
�nite-state enumeration and model-checking methods (see below) makes them directly
comparable to direct execution techniques, as found, for example, in the VDM-SL Tool-
box [VDM]. In some cases, model checkers also provide simulation. For example, the
reachability analysis strategy used by state-exploration model checkers can also be used
to \simulate" system behavior by exploring a single path (rather than all possible paths)
through the state space. Both Mur� [DDHY92, ID93] and Spin [Hol91] can simulate

68 Chapter 5

the execution of models written in their respective languages. The type of errors found
by direct execution techniques varies, depending on other error detection techniques,
if any, used prior to simulation or animation. For example, [MW95, p. 92] animated
a speci�cation that had previously undergone only syntactic analysis and weak type
analysis (essentially limited to arity checking on function and operation calls). In their
case, animation detected two type errors in addition to errors due to misinterpretation
of the requirements, incorrect speci�cation of requirements, and erroneous translation
from the speci�cation into the simulation language. Executability also supports the de-
velopment and systematic evaluation of test suites, thereby potentially exposing
aws
and oversights in a test regime, as well as in the corresponding speci�cation.

Theorem Proving, Proof Checking, and Model Checking: Theorem proving,
proof checking, and model checking are all forms of analysis that can be used to detect
logical anomalies and subtle infelicities in a formal speci�cation. Although historically
these forms of validation were used to prove correctness of programs and detailed hard-
ware designs, they are now typically used for fault detection and design exploration,
where they are arguably most e�ective, as well as for verifying correctness. The analy-
sis provided by theorem proving, proof checking, and model checking not only involves
the speci�cation, but also its logical consequences, that is, all formulas that can be
proved from the original speci�cation using formal deduction. There are several issues
in the validation of formal speci�cations. One is the issue of internal consistency, that is,
whether the speci�cation is logically consistent. If not, the speci�cation fails to say any-
thing useful. Another is the issue of meaningfulness, that is, whether the speci�cation
means what is intended. A third is the issue of completeness. Although various notions
of completeness have been proposed, the general idea is that a speci�cation should iden-
tify all contingencies and de�ne behavior appropriate to each.18 The type of testing and
error detection o�ered by theorem proving, proof checking, and modeling is in many
ways analogous to traditional testing regimes; the theorem prover, proof checker, or
model checker \executes" the speci�cation, allowing the practitioner to explore design
options and the implications of design choices.

5.5 The Utility of Formal Speci�cation

A speci�cation may serve many di�erent functions. Lamport [Lam89, p. 32] has sug-
gested that a formal speci�cation functions as \a contract between the user of a system
and its implementer. The contract should tell the user everything he must know to
use the system, and it should tell the implementer everything he must know about the
system to implement it. In principle, once this contract has been agreed upon, the
user and the implementer have no need for further communication." Lamport's simile
highlights three issues. First, as noted earlier, one of the most important functions of a
formal speci�cation is analytic; using the deductive apparatus of the underlying formal

18Rushby [Rus93b, pp. 69-71] cites several specialized de�nitions, including characterizations of com-

pleteness for abstract data types and for real-time process-control systems.

NASA-GB-001-97 69

system, a formal speci�cation serves as the basis for calculating, predicting, and (in
the case of executable speci�cations) testing system behavior. However, a formal spec-
i�cation may also serve an important descriptive function, that is, provide a basis for
documenting, communicating, or prototyping the behavior and properties of a system.
Second, a (completed) speci�cation represents the formalization of a consensus about
the behavior and properties of a system. Diverging somewhat from Lamport's descrip-
tion and focusing on the early life cycle, we prefer to view a formal speci�cation as a
contract between a client, a requirements analyst (and possibly also a designer), and a
formal methods practitioner. Third, while in principle, a �nalized contract precludes
the need for further communication among the interested parties, in practice, moving
from informal requirements to a formal speci�cation and high-level design is an iterative
rather than a linear process; issues exposed in the development of the formal speci�ca-
tion may need to be factored back into the requirements, and similarly, issues raised by
the high-level design may percolate back to impact either the formal speci�cation, the
requirements, or both.

Although a speci�cation that has not been validated through proof can be aptly
compared to a program that has not been debugged, there are nevertheless real bene�ts
to be gained from modeling and formally specifying requirements and high-level designs,
including the following.

� Clarify Requirements and High-Level Designs: A formal speci�cation provides a
concise and unambiguous statement of the underlying requirements and design,
thereby exposing fundamental issues that tend to be obscured by lengthy informal
statements. The formalization of the requirements for the recent optimization of
Space Shuttle Reaction Control System Jet Selection (JS) [NASA93, Appendix B]
recounted here in Section 3.1.1 illustrates this point nicely.

� Articulate Implicit Assumptions: Formalisms can help identify and express im-
plicit assumptions in requirements and design. For example, the concept of state
variables is not explicitly mentioned in Space Shuttle requirements; their existence
must be inferred from context by noting the function and persistence of local vari-
ables. Explicitly modeling and specifying state variables can signi�cantly increase
the precision and perspicuity of the requirements, as illustrated by the partial
speci�cation of the new Space Shuttle Global Positioning System (GPS) navi-
gation capability [DR96]. Identifying undocumented assumptions is particularly
important in the context of an evolving system design.

Another aspect of requirements and high-level design that frequently contains im-
plicit assumptions is the interaction of the system with the environment or context
in which it is assumed to operate, including the input space. Making input con-
straints and environmental assumptions explicit often exposes requirements and
design-level issues that have been overlooked.19 The speci�cation of the Space

19The A-7 Methodology [vS90], among others, has paid particular attention to the explicit enumera-

tion of relevant environmental variables.

70 Chapter 5

Shuttle Heading Alignment Cylinder Initiation Predictor and Position Error Dis-
plays Change Request (HAC CR) is a good example of the value of the process
of formalization for identifying and capturing undocumented, domain-speci�c as-
sumptions. Quoting from the report for the HAC CR formal methods project:
\Capturing such [domain-speci�c] knowledge and documenting it as rationale with
the speci�cation is valuable [RB96, p. 17]."

� Expose Flaws: The process of formalization invariably exposes signi�cant
aws
in requirements and high-level design, even without the bene�t of analysis or
proof. In the case of strongly typed speci�cation languages, typechecking can pro-
vide a potent tool for revealing anomalies in the speci�cation, as well as potential
anomalies in the requirements and design, and doing so early in the life cycle while
errors are far less costly to correct. The previously mentioned GPS project [DR96]
provides a nice example of the utility of speci�cation for revealing anomalies in
immature requirements for large, complex systems, especially among subsystem
interfaces. Executing a speci�cation provides another productive means of expos-
ing
aws, as noted in [MW95].

� Identify Exceptions: The discipline involved in formalizing requirements and high-
level design also serves to identify \end cases" and exceptions and to encourage
more thorough consideration of these exceptional cases, as illustrated in [LFB96].

� Evaluate Test Coverage: An executable speci�cation may also be used to run and
evaluate proposed test suites, yielding a measure of test coverage relatively early
in the life cycle.

The utility of formal speci�cation also extends to work in program transformation
and synthesis, that is, the mechanical application of a series of transformations that
derives a program from its speci�cation. This approach di�ers from traditional com-
pilation of high-level languages insofar as it seeks to bridge a far larger language gap
between input (speci�cation) and output (program). To make this feasible, the scope
of the speci�cation language must be severely constrained, and/or the transformation
process must be guided by a skilled programmer. The techniques rely on a set of
correctness-preserving transformations that guarantee that the resulting program will
exhibit the same behavior as its speci�cation. Ideally, the transformation also confers
additional (desired) properties such as e�ciency. Suggestive, but by no means exhaus-
tive, examples of this broad spectrum of techniques are the following:

� Problems expressed in a speci�cation-oriented language (for example, pure Lisp)
typically exhibit clarity and simplicity, but lack the e�ciency and portability that
comes from a conventional programming language (for example, FORTRAN and
C). Boyle has pursued a transformational approach to bridging this gap [Boy89]
that involves successive decomposition into a series of steps that can be accom-
plished by the automatic application of a set of special-purpose, but straightfor-

NASA-GB-001-97 71

ward transformations. Examples include the use of a succinct functional speci-
�cation to derive a FORTRAN implementation of an algorithm for solving one-
dimensional hyperbolic partial di�erential equations [BH91].

� A certain class of problems can be solved by a carefully programmed instance
of a general algorithmic technique, for example, search problems can be solved
by a divide-and-conquer strategy. KIDS (Kestrel Interactive Development Sys-
tem) [Smi90] provides tools for deductive inferencing, algorithm design, expres-
sion simpli�cation, �nite di�erencing, partial evaluation, data type re�nement and
other general transformations that allow a user \ to synthesize complex codes em-
bodying algorithms, data structures, and code-optimization techniques that might
be too di�cult to produce manually [SG96, p.31]." The approach is interactive; the
user guides the system in the application of powerful correctness-preserving trans-
formations. KIDS has been applied to a variety of domains, including schedul-
ing, combinatorial design, sorting and searching, computational geometry, pattern
matching, and mathematical programming.

� The class of �nite functions, including for example, �nite state transitions, lends
itself to tabular representations that can be manipulated to perform various consis-
tency and completeness checks and, in some cases, to generate code and documen-
tation. For example, the decision table, \a tabular format for specifying a complex
set of rules that choose among alternative actions" [HC95, p. 97] provides the basis
for the Tablewise tool [HC95,HGH96] that tests these tables for consistency and
completeness, performs a limited form of structural analysis, and generates Ada
code implementing the table, as well as English-language documentation.

� If an application domain is suitably restricted, it is possible to develop a com-
pletely automatic process for synthesizing a program from its speci�cation. The
AMPHION system [LPPU94] illustrates this approach for the domain of solar
system kinematics. The user speci�es a problem via a graphical user interface
portraying the domain's astronomical objects and desired con�guration. The sys-
tem then selects components from a preexisting FORTRAN subroutine library
and synthesizes the \glue" code that assembles these components into a complete
solution. The system applies constructive theorem proving to perform its selection
and synthesis. The end user, however, operates purely at the speci�cation level
and need never interact with this underlying mechanism.

5.6 A Partial SAFER Speci�cation

The PVS speci�cation of SAFER is constructive in style and retains the explicit notion of
state represented in the SAFER models developed at the end of Chapter 4. To facilitate
readability and emphasize the mapping between informal description, requirements, and
the PVS formalization, the speci�cation also preserves the bias toward representative

72 Chapter 5

rather than abstract formalization introduced into the models of the preceding chapter.
The complete PVS speci�cation is presented in full in Section C.3.3. The fragment
discussed below continues the focus on thruster selection. This discussion is intended to
be self-contained; if additional information on the relatively few PVS language features
necessary to understand the formal speci�cation can be found in Section C.3.1. Full
PVS documentation is available in [OSR93b].

The PVS speci�cation of thruster selection is a straightforward elaboration of
the underlying functional model developed in Chapter 4. Accordingly, the skele-
ton of the PVS theory for thruster selection shown below consists of three func-
tions: integrated commands, which forms an integrated, six degree-of-freedom com-
mand from the HCM and AAH inputs; selected thrusters, which takes an inte-
grated command and selects the thrusters necessary to achieve the command; and
selected actuators, which acts as an interface function and consists of the composi-
tion of integrated commands and selected thrusters. Each of these functions is pa-
rameterized by from one to three parameters denoted by a parameter name followed by
a type name. The type de�nitions for these types are not reproduced here, but are avail-
able in subsequent discussion and in Appendix C either in the theory avionics types

or in the theory most closely associated with the object in question. For example, the
types six dof command and rot command are de�ned in the theory avionics types,
while the type AAH state is de�ned in the theory automatic attitude hold. The type
actuator commands is de�ned as a thruster list. Thruster selection is formalized as
a PVS theory aptly named thruster selection. The theory is the basic organizational
concept in PVS and provides the modularization and encapsulation familiar in modern
programming languages; theories may export to and import from other theories.

thruster_selection: THEORY

BEGIN

integrated_commands((HCM: six_dof_command),

(AAH: rot_command),

(state: AAH_state)): six_dof_command = ...

selected_thrusters(cmd: six_dof_command): thruster_list = ...

selected_actuators((HCM: six_dof_command),

(AAH: rot_command),

(state: AAH_state)): actuator_commands =

selected_thrusters(integrated_commands(HCM, AAH, state))

END thruster_selection

Fleshing out the skeleton of thruster selection introduces a type de�nition
(thruster list) and �ve additional functions. However, the �rst thing to notice about

NASA-GB-001-97 73

this elaborated version is the IMPORTING clause, which allows visible entities introduced
in the theories avionics types, propulsion module, and automatic attitude hold

to be imported and used in the theory thruster selection.

IMPORTING avionics_types, propulsion_module, automatic_attitude_hold

For example, this importing clause brings in several type declarations, including those
mentioned above for six dof command and rot command. The importing clause is fol-
lowed by a local declaration of the type thruster list, which is de�ned as a list of
thruster names.20 The type thruster names is in turn imported from the theory
propulsion module.

thruster_list: TYPE = list[thruster_name]

The next declaration introduces the Boolean-valued function rot cmds present,
whose signature includes one parameter of type rot command.

rot_cmds_present(cmd: rot_command): bool =

(EXISTS (a: rot_axis): cmd(a) /= ZERO)

The declaration for rot command de�nes a function from type rot axis to type
axis command.

rot_axis: TYPE = froll, pitch, yawg
axis_command: TYPE = fNEG, ZERO, POSg
rot_command: TYPE = [rot_axis -> axis_command]

rot axis is an enumerated type corresponding to the three rotation axes: roll, pitch,
yaw. axis command is an enumerated type with three values corresponding to the HCM
or AAH command values: negative, zero, or positive. The notation cmd(a) denotes a
function that maps a rotation axis (one of: roll, pitch, yaw) to the command associated
with that axis (one of: NEG, ZERO, POS). rot cmds present returns the value of
the existentially quanti�ed formula shown above. That value is true if there is at least
one rotational axis whose associated (HCM or AAH) command is nonzero, and false
otherwise.

The next function, prioritized tran cmd, speci�es the requirement that there is
at most one translation command at a given cycle and that translation axis commands
are prioritized with X-axis commands having highest priority and Z-axis commands
lowest priority. The encoding takes the form of a nested-if expression and uses a PVS
override expression to derive a new value from null tran command, which is written
as an unnamed function or lambda expression. The result of an override expression

20The thruster list declaration actually uses the built-in list datatype provided in the PVS pre-

lude [OSR93a, pp. 39{41,78{80], [Sha93].

74 Chapter 5

is a function21 that is exactly the same as the original, except that it takes on new
values at the speci�ed arguments. A tran command does the analogous mapping for
the translation axes, X, Y, and Z that the rot command does for the rotation axes.
Accordingly, in the �rst branch of the nested-if expression, if an X-axis command is
present (the value of tran(X) is not equal to ZERO), null tran command takes on the
value of tran(X) for the argument X, and similarly for the other branches of the nested-if,
which handle the cases for Y- and Z-axis updates.

tran_axis: TYPE = fX, Y, Zg
tran_command: TYPE = [tran_axis -> axis_command]

null_tran_command: tran_command = (LAMBDA (a: tran_axis): ZERO)

prioritized_tran_cmd(tran: tran_command): tran_command =

IF tran(X) /= ZERO

THEN null_tran_command WITH [X := tran(X)]

ELSIF tran(Y) /= ZERO

THEN null_tran_command WITH [Y := tran(Y)]

ELSIF tran(Z) /= ZERO

THEN null_tran_command WITH [Z := tran(Z)]

ELSE null_tran_command

ENDIF

The function combined rot cmds transforms rotation commands from the HCM and
the AAH and returns a \combined" rotation command that inhibits HCM commands
at the time AAH is initiated (ignore HCM), but otherwise gives nonzero HCM rotation
commands precedence over AAH rotation commands. The argument ignore HCM is a
predicate, that is, a function with range type Boolean. Note the use of the lambda
expression to map over the three rotation axes.

rot_predicate: TYPE = [rot_axis -> bool]

combined_rot_cmds((HCM_rot: rot_command),

(AAH: rot_command),

(ignore_HCM: rot_predicate)): rot_command =

(LAMBDA (a: rot_axis):

IF HCM_rot(a) = ZERO OR ignore_HCM(a)

THEN AAH(a)

ELSE HCM_rot(a)

ENDIF)

Using the preceding de�nitions, integrated commands is elaborated as shown below.
The only new bit of PVS that requires explanation is the record structure used to specify

21Or record; a PVS record may also be modi�ed by an override expression.

NASA-GB-001-97 75

the integrated six degree-of-freedom command. In PVS, record types take the form

[# a1 : t1; : : : an : tn #]

where the ai are the accessors and the ti are the component types. Record access in
PVS uses functions and functional notation, for example, ai(r), rather than the more
usual \dot" notation r:ai. Elements of the PVS record type (or, equivalently, record
constructors) have the form

(# a1 : t1; : : : an : tn #)

For example, the record type six dof command has two accessors, one each of type
tran command and type rot command. In other words, an integrated six degree-of-
freedom command has two components representing the commanded acceleration in
the translational and rotational axes. Since both components are modi�ed, record con-
structors rather than override expressions are used. Details of the AAH state record
type have been suppressed below, but appear in full in Appendix C. The requirement
that HCM rotation commands suppress HCM translation commands, but HCM trans-
lation commands may coexist with AAH rotation commands, is speci�ed by the two
branches of the if-expression.

rot_cmds_present(cmd: rot_command): bool =

(EXISTS (a: rot_axis): cmd(a) /= ZERO)

six_dof_command: TYPE = [# tran: tran_command, rot: rot_command #]

AAH_state: TYPE = [# ignore_HCM: rot_predicate, ... #]

integrated_commands((HCM: six_dof_command),

(AAH: rot_command),

(state: AAH_state)): six_dof_command =

IF rot_cmds_present(rot(HCM))

THEN (# tran := null_tran_command,

rot := combined_rot_cmds(rot(HCM), AAH,

ignore_HCM(state)) #)

ELSE (# tran := prioritized_tran_cmd(tran(HCM)),

rot := AAH #)

ENDIF

Astute readers may have noticed that this version of integrated commands does
not take into account the additional requirement that AAH is disabled on an axis if a
crewmember rotation command is issued for that axis while AAH is alive, resulting in the
possibility re
ected in the model in Chapter 4 as the transition \three axes o�," where all
three axes have been disabled in this way. Actually, the version of integrated commands

76 Chapter 5

presented above is slightly simpli�ed; the full version in Appendix C does handle this
case.

The next two functions, BF thrusters and LRUD thrusters, specify the thruster
select logic presented in the tables in Figures C.2 and C.3, respectively. The details
are omitted here, but the full version in Appendix C speci�es these tables using nested
PVS tables that yield admirable traceability between the documentation and the spec-
i�cation.

BF_thrusters(X_cmd, pitch_cmd, yaw_cmd: axis_command): thruster_list = ...

LRUD_thrusters(Y_cmd, Z_cmd, roll_cmd: axis_command): thruster_list = ...

The elaborated version of selected thrusters reveals somewhat more about how
an integrated six degree-of-freedom command is mapped into a vector of actuator com-
mands. The speci�cation uses a PVS let expression, a syntactic convenience that
allows the introduction of bound variable names to refer to subexpressions. In this
case, the bound variables refer to the back/front (BF) and the left/right/up/down
(LRUD) thrusters de�ned by the thruster select logic (speci�ed as BF thrusters and
LRUD thrusters) to implement the commanded translational and rotational accelera-
tions. The resulting list of thrusters is formed by appending the BF and LRUD thruster
lists.

selected_thrusters(cmd: six_dof_command): thruster_list =

LET BF_thr =

BF_thrusters(tran(cmd)(X), rot(cmd)(pitch), rot(cmd)(yaw)),

LRUD_thr =

LRUD_thrusters(tran(cmd)(Y), tran(cmd)(Z), rot(cmd)(roll))

IN append(BF_thr, LRUD_thr)

Once again, the function presented here is a somewhat simpli�ed version of the
speci�cation in Appendix C. In this case, the simpli�cation has been to omit the logic
corresponding to the rightmost two columns of Figures C.2 and C.3, which specify
the use of two additional thrusters for certain commanded accelerations if the given
constraints are satis�ed. For example, the thruster select logic for \-X, -pitch, -yaw"
(�rst row of the table in Figure C.2) speci�es thruster B4 and, conditionally, thrusters
B2 and B3; B2 and B3 are selected only if there is no commanded roll.

The �nal function in theory thruster selection is the interface function
selected actuators, which was previously introduced as it appears in Appendix C.
The somewhat abbreviated version of the full theory discussed here is collected in full
below. Note that type declarations from other theories reproduced above to facilitate
the discussion do not explicitly appear, but are implicitly \visible" via the IMPORTING
clause.

NASA-GB-001-97 77

thruster_selection: THEORY

BEGIN

IMPORTING avionics_types, propulsion_module, automatic_attitude_hold

thruster_list: TYPE = list[thruster_name]

rot_cmds_present(cmd: rot_command): bool =

(EXISTS (a: rot_axis): cmd(a) /= ZERO)

prioritized_tran_cmd(tran: tran_command): tran_command =

IF tran(X) /= ZERO

THEN null_tran_command WITH [X := tran(X)]

ELSIF tran(Y) /= ZERO

THEN null_tran_command WITH [Y := tran(Y)]

ELSIF tran(Z) /= ZERO

THEN null_tran_command WITH [Z := tran(Z)]

ELSE null_tran_command

ENDIF

combined_rot_cmds((HCM_rot: rot_command),

(AAH: rot_command),

(ignore_HCM: rot_predicate)): rot_command =

(LAMBDA (a: rot_axis):

IF HCM_rot(a) = ZERO OR ignore_HCM(a)

THEN AAH(a)

ELSE HCM_rot(a)

ENDIF)

integrated_commands((HCM: six_dof_command),

(AAH: rot_command),

(state: AAH_state)): six_dof_command =

IF rot_cmds_present(rot(HCM))

THEN (# tran := null_tran_command,

rot := combined_rot_cmds(rot(HCM), AAH,

ignore_HCM(state)) #)

ELSE (# tran := prioritized_tran_cmd(tran(HCM)),

rot := AAH #)

ENDIF

78 Chapter 5

BF_thrusters(X_cmd, pitch_cmd, yaw_cmd: axis_command): thruster_list = ...

LRUD_thrusters(Y_cmd, Z_cmd, roll_cmd: axis_command): thruster_list = ...

selected_thrusters(cmd: six_dof_command): thruster_list =

LET BF_thr =

BF_thrusters(tran(cmd)(X), rot(cmd)(pitch), rot(cmd)(yaw)),

LRUD_thr =

LRUD_thrusters(tran(cmd)(Y), tran(cmd)(Z), rot(cmd)(roll))

IN append(BF_thr, LRUD_thr)

selected_actuators((HCM: six_dof_command),

(AAH: rot_command),

(state: AAH_state)): thruster_list =

selected_thrusters(integrated_commands(HCM, AAH, state))

END thruster_selection

Chapter 6

Formal Analysis

Formal analysis refers to a broad range of tool-based techniques that can be used singly
or in combination to explore, debug, and verify formal speci�cations, and to predict,
calculate, and re�ne the behavior of the systems so speci�ed. These analysis techniques,
which di�er primarily in focus, method, and degree of formality, include direct execution,
simulation, and animation; �nite-state methods (state exploration and model checking);
and theorem proving and proof checking.

This chapter describes each of these techniques and suggests strategies for their
productive combination. It also examines the role of proof in theory interpretation,
proofs of properties, and enhanced typechecking, as well as the utility of the proof
process for calculation, prediction, and veri�cation. The issue of mechanized support
for formal analysis is presented, albeit in a suggestive rather than exhaustive discussion.
The chapter closes with the speci�cation and proof of the SAFER requirement that
describes the maximum number of thrusters that can be �red simultaneously.

6.1 Automated Deduction

Automated deduction or theorem proving refers to the mechanization of deductive rea-
soning. Deductive methods provide a foundation for reasoning about in�nite-state sys-
tems and are typically preferred for abstract, high-level speci�cations and data-oriented
applications. There are a variety of approaches to mechanizing formal deduction, re-

ecting the relative maturity of the �eld of mechanical theorem proving. This section
begins with background material on formal systems and their models, followed by a his-
tory of automated deduction, a survey of techniques underlying automated reasoning,
and concluding remarks on their utility.

79

80 Chapter 6

6.1.1 Background: Formal Systems and Their Models

The material in this section provides technical background that some readers may prefer
to skip the �rst time through, or to detour altogether. Dangerous bend signs bracket
the most technical parts of the section.

6.1.1.1 Proof Theory

A formal system consists of a nonempty set of primitives|typically a set of �nite strings
taken from an alphabet of symbols; a set of axioms, that is, statements, taken as given,
involving the primitives; and a set of inference rules or other means of deriving further
statements, called theorems.1 The axioms and rules of inference of a formal system are
referred to as its deductive system. A set of axioms, together with all the theorems
derivable (provable) from it and from previously derived theorems, is called a theory. A
proof of a theorem in a formal system is simply a series of transformations that conform
to the rules of inference of that system. As such, the notion of proof is strictly syntactic.
The symbol ` (read \turnstile") is used to express this notion of proof. Thus `L ,
read \ is provable in logic L" (or, equivalently ` if the logic is unambiguous from
the context), means that is a theorem in the given logic, that is, is provable using
the axioms of L without further assumptions. In general, the relationship between
a sentence � and the set of sentences,
0; : : : ;
n, assumed for its proof is expressed
as
0; : : : ;
n ` T , where each
i is either an axiom, an additional assumption2, or a
previously proved theorem.

The notion of formal system sketched thus far is purely syntactic, describing what
is generally referred to as an uninterpreted calculus or simply a calculus. The study
of the purely formal or syntactic properties of an uninterpreted calculus, including de-
ducibility, consistency, simple completeness, and independence, is called proof theory.
The three notions of consistency, completeness, and independence are not equally impor-
tant. Consistency is of fundamental importance because it provides a minimal condition
of adequacy on any set of (nonintentionally self-contradictory) axioms. A formal sys-
tem is consistent if it is not possible to derive from its axioms both a statement and the
denial (negation) of that statement. The notion of completeness has many di�erent in-
terpretations, all of which share the idea that a formal system is complete if it is possible
to derive within it all statements satisfying a given criterion. In general, completeness

1In this section, the terms sentence, statement, and well-formed formula are used interchangeably,

avoiding subtle distinctions sometimes made in the literature. In the context of �rst-order logic, these

terms are synonymous with closed formula and denote a formula in which there are no free (unbound)

variables.
2Assumptions are statements assumed to be true without proof. Axioms are assumptions whose

truth is assumed to be \self-evident," empirically discoverable or, in any case, stipulated for the sake

of argument, rather than proved using the given rules of inference. There are logical and nonlogical

axioms. The latter deal with speci�c aspects of a domain, for example, Peano's axioms (postulates)

which are interpreted with respect to a domain of numbers, whereas logical axioms deal with general

logical properties of the given calculus, for example, the axioms of propositional calculus.

NASA-GB-001-97 81

has theoretical importance for logicians, but less importance for those working in formal
methods. It is quite di�cult to establish completeness for systems of any complexity,
and many interesting and even important formal systems are provably incomplete. A
formal system S is said to be simply complete if and only if, for every closed, well-formed
formula, A, either A or :A is a theorem of S, that is, A can either be proved or dis-
proved in S. Other terms for proof-theoretic notions of completeness include deductively
complete, syntactically complete, and complete with respect to negation.3 The notion of
independence refers to whether any of the axioms or rules of inference of a system are
super
uous, that is, can be derived from the remaining deductive system. Indepen-
dence is largely a matter of \elegance." Although economy is a desirable characteristic
of an axiom system, its absence does not necessarily impact the ultimate acceptibility
or utility of the system.

A formal system, S, is decidable if there is an e�ective procedure (algorithm) for
determining whether or not any closed, well-formed formula, , of S is a theorem of
S. Simple completeness can also be de�ned in terms of decidability. A formal system,
S, is simply complete if it is consistent and if every closed, well-formed formula in S is
decidable in S [Sho67, p. 45]. A formal system, S, is semidecidable if there is an algo-
rithm for recognizing the theorems of S. If given a theorem, the algorithm must halt
with a positive indication. If given a nontheorem, the algorithm need not halt, but if it
does, it must give a negative indication. S is undecidable if it is neither decidable nor
semidecidable. The propositional (statement) calculus is decidable. The predicate cal-
culus is semidecidable, although there are subsystems of �rst-order predicate logic, such
as monadic predicate logic (so-named because predicates can take only one argument),
that are decidable.

In the logical tradition, the distinction between syntax and semantics largely re
ects
the distinction between formal systems and their interpretations, as studied by proof
theory and its semantic analog, model theory, respectively. An interpretation consists
of a (nonempty, abstract or concrete) domain of discourse and a mapping relative to
that domain that assigns a semantic value or meaning to each well-formed sentence
of the calculus, as well as to every well-formed constituent of such a sentence. For
example, an interpretation for a predicate calculus would assign a value to function and
predicate symbols, constants, and variables. The meaning or semantic value assigned
to a syntactically well-formed sentence of the predicate calculus would be a truth value,
either true or false, depending on the values assigned to its constituent parts. If the
description of a formal system includes semantic rules that systematize an interpretation
for each syntactically well-formed constituent, the calculus is said to be interpreted.4

3G�odel's proof that arithmetic is incomplete if consistent used a proof-theoretic notion of complete-

ness.
4Carnap [Car58, pp. 102-3] de�nes a calculus as \a language with syntactical rules of deduction," an

interpreted language as \a language for which a su�cient system of semantical rules is given," and an

interpreted calculus as \a language for which both syntactical rules of deduction and semantic rules of

interpretation are given."

82 Chapter 6

6.1.1.2 Model Theory

An interpretation is a model for a formal system if all the axioms of the formal system
are true in that interpretation. Similarly, an interpretation is a model for a theory or
for a set of sentences if it is a model for the formal system in which the theory or the
set of sentences are expressed and all the sentences in the given theory or the given set
of sentences also valuate to true in that model. If a theory has an axiomatic charac-
terization, a model for the theory is necessarily a model for the axioms of the theory.
Most interesting theories have unintended (nonstandard) models, as well as intended
(standard) ones. For example, plane geometry is the standard model of the Euclidean
axioms, but not, as was believed before the discovery of the non-Euclidean geometries,
the only model. Similarly, the natural numbers are the standard or intended model
of the Peano axioms, although, again, not the only model [Kay91]. The fact that an
inconsistent system cannot have a model provides both a syntactic and semantic char-
acterization of consistency that can be usefully exploited. For example, it is typically
easier to demonstrate syntactically that a system is inconsistent, deriving a contradic-
tion from the axioms, than to use a meta-level argument to prove that the system has
no models. Conversely, it is generally easier to demonstrate semantically that a sys-
tem is consistent by exhibiting a model, than to show the impossibility of deriving a
contradiction from the given axioms.

Model theory is the study of the interpretations of formal systems. Of particular
importance are the concepts of logical consequence, validity, completeness, and sound-
ness. De�nitions of these notions reveal the rich interplay between proof theory and
model theory. Let I be a set of interpretations for a calculus and be a sentence of the
calculus. is satis�able (under I) if and only if at least one interpretation of I valuates
 to true. is (universally) valid, written j= , if and only if every interpretation in I
valuates to true.5 If every model of a set of sentences, S, is also a model of a sentence,
 , then S is said to entail , written S j= .

Let be a sentence and � be a set of sentences �1; : : : ; �n of a formal system, S. S
is semantically complete with respect to a model M (weakly semantically complete) if
all (well-formed) sentences of S that are true inM are theorems of S. A formal system,
S, is sound if � j= whenever � ` , that is, if the rules of inference of S preserve
truth. Semantic completeness is the converse of soundness; soundness establishes that
every sentence provable in S is true in S relative to M , and (semantic) completeness
establishes that every sentence true in S relative to M is provable in S. Both the
propositional calculus and the predicate calculus are sound and complete.

There is also a semantic characterization of independence. A given axiom, �, of a
formal system, S, is independent of the other axioms of S if the system, S0, that results
from deleting � has models that are not also models of (the whole system) S. Ideally,

5Arguably, for the purposes of formal methods, only those interpretations that make the theorems

of a formal system true, that is, only the models of the system are of interest. With this in mind, the

de�nitions of satis�ability and validity can be stated in terms of models rather than interpretations, as

done in [Rus93b, p. 223].

NASA-GB-001-97 83

the syntactic and semantic notions of independence are provably equivalent for a given
system S. As noted with respect to the proof- and model-theoretic characterizations
of consistency, a semantic argument may be easier in some cases and a syntactic one
in others. However, it is apparently still an open question as to what properties a
system must possess to ensure that the syntactic and semantic characterizations of
independence are equivalent.

6.1.1.3 An Example of a First-Order Theory

Shoen�eld's classical axiom system for the natural numbers, N , provides a nice illustra-
tion of a class of formal system known as a �rst-order theory [Sho67, pp. 22,3]. In the
following de�nition, A, B, and C are formulas and x and y are (syntactic) variables in
the given �rst-order language, f is an n-ary function symbol, and p is an n-ary predicate
symbol. A formal system, T , is de�ned as

� a �rst-order language

� the following logical axioms, as well as certain further nonlogical axioms

{ propositional axiom: :A _A

{ substitution axiom: Ax[a]! 9xA

{ identity axiom: x = x

{ equality axiom: x1 = y1 ! : : : ! xn = yn ! fx1 : : : xn = fy1 : : : yn or
x1 = y1 ! : : :! xn = yn ! px1 : : : xn ! py1 : : : yn

� the following rules of inference6

{ expansion rule: infer B _A from A

{ contraction rule: infer A from A _A

{ associative rule: infer (A _B) _ C from A _ (B _ C)

{ cut rule: infer B _ C from A _B and :A _ C

{ 9-introduction rule: if x is not free in B, infer 9xA! B from A! B

The de�nition of T provides the logical apparatus necessary for specifying a (�rst-
order) theory. The only additions required are a speci�cation of the theory's nonlogical
symbols and its nonlogical axioms. For example, Shoen�eld's axiomatization of the
natural numbers is speci�ed as a theory, N , with the following nonlogical symbols and
axioms [Sho67, p. 22].

� nonlogical symbols: the constant 0, the unary function symbol S (denoting the
successor function), the binary function symbols + and � , and the binary predicate
symbol <.

6An occurrence of x in A is bound in A if it occurs in a part of A of the form 9xB; otherwise, it is

free in A [Sho67, p. 16].

84 Chapter 6

� nonlogical axioms

N1. Sx 6= 0

N2. Sx = Sy ! x = y

N3. x+ 0 = x

N4. x+ Sy = S(x+ y)

N5. x � 0 = 0

N6. x � Sy = (x � y) + x

N7. :(x < 0)

N8. x < Sy $ x < y _ x = y

N9. x < y _ x = y _ y < x

6.1.2 A Brief History of Automated Proof

The automation of mathematical reasoning coincides with the emergence of the �eld
of Arti�cial Intelligence (AI), whose early pioneers embarked on a program to (me-
chanically) simulate human problem solving.7 By 1960, theorem provers for the full
�rst-order predicate calculus had been implemented by Paul Gilmore [Gil60] and by
Hao Wang [Wan60b,Wan60a] in the United States, and by Dag Prawitz [PPV60] in
Sweden. Although this mechanization constituted an important proof of concept, the
practical utility of the theorem provers was limited, due to the combinatorial explo-
sion of the search space encountered in proofs of anything other than relatively simple
theorems.

Following Shankar's exposition [Sha94], it is useful to distinguish three approaches
in the subsequent development of automatic theorem proving and proof checking: res-
olution theorem provers, nonresolution theorem provers, and proof checkers. This dis-
cussion focuses solely on developments in Europe and the United States. There is
also signi�cant work in automated theorem proving in the region formerly known as
the USSR and in the People's Republic of China. The Chinese have been particularly
active in the area of decision procedures for geometrical applications [BB89, p. 27].

The �rst e�cient mechanization of proof grew out of work done by Alan Robinson
in the early 1960s and published in 1965 [Rob65]. Robinson combined procedures inde-
pendently suggested by Davis and Putnam and by Prawitz to automate a signi�cantly
more e�cient proof procedure for the �rst-order predicate calculus known as resolution.
The key notion from Prawitz was uni�cation, an algorithm that gives the unique, most
general substitution that creates a complementary pair of literals P and :P . Reso-
lution is a complete refutation procedure for �rst order logic (see Section 6.1.3.1.3).
After its introduction in the mid 1960s, resolution was a focal point for activity in au-
tomated theorem proving, yielding numerous extensions and optimizations. By 1978,

7MacKenzie [Mac95] and Bl�asius and B�urckert [BB89] provide interesting histories of post-Euclidean

developments in automated reasoning.

NASA-GB-001-97 85

Loveland's textbook on automated theorem proving documented some 25 variants of
resolution [Mac95, p. 14]. Despite this considerable activity and a steady increase in
computing power, the early resolution theorem provers su�ered from the same limi-
tation that had plagued the previous generation of mechanical proof procedures: the
combinatorial explosion of the proof search space.

The 1970s also witnessed the emergence of logic programming, originally attributed
to Kowalski and Colmerauer [Kow88]. Colmerauer and his colleagues implemented a
specialized resolution theorem prover called Prolog (abbreviating the French \Program-
mation en Logique") that implemented Kowalski's procedural interpretation of Horn
clause logic8. The result was a theorem proving system that could be used as a pro-
gramming language [SS86].

Despite a decline in the 1970s due largely to disappointing performance, research
in resolution theorem proving continued. Although uni�cation remained the crucial
algorithm, resolution provers added sophisticated heuristics, data structures, and opti-
mizations to manage combinatorial explosion. The result has been increasingly e�cient,
powerful systems. In the 1970s and early 1980s, research in resolution theorem prov-
ing existed primarily at Argonne National Laboratory, where Robinson had originally
been introduced to automatic theorem proving. Argonne's Aura (Automated Reasoning
Assistant) and, more recently, Otter [WOLB92] systems have successfully proven not
only known theorems, but also open conjectures in several �elds of mathematics. In
addition to Otter, current state-of-the-art resolution provers include SETHEO [LSB92]
and PTTP [Sti86]. Paulson characterizes Otter, SETHEO, and PTTP as \automatic
theorem proving at its highest point of re�nement" [Pau97] and notes their extremely
high inference rates, their e�cient use of storage, and their ability to prove many of the
toughest benchmark problems.

Resolution methods yield proofs that are not readily understood by humans. This
perceived weakness, as well as the di�culty of combining resolution with nonlogical
inference techniques such as induction, led researchers to pursue other approaches, in-
cluding various levels of human interaction and a renewed interest in heuristics. In the
1970s, Woody Bledsoe and his colleagues at the University of Texas began work in \non-
resolution theorem-proving," pursuing proof procedures that yielded more natural and
powerful proofs for mathematical theorems, as well as heuristics (like those of the early
AI pioneers) that produced human-like proofs. Although Bledsoe initially developed an
automated prover for set theory that combined both resolution and heuristics, he later
replaced resolution with a more \natural" procedure, augmented with a \limit heuris-
tic" for calculus proofs, algebraic simpli�cation, and linear inequality routines. The
resulting prover successfully proved theorems in elementary calculus that had stymied
existing resolution-style provers [Mac95].

Robert Boyer and J Strother Moore have collaborated on several in
uential theorem
provers that use heuristics to develop proofs by induction and rewriting. The Nqthm
series of provers [BM79,BM88], and its successor ACL2 [KM94,KM96], are highly auto-

8A clause is Horn if it has at most one positive literal, for example, :P (x) _ :Q(x) _ R(x).

86 Chapter 6

mated, but require user guidance to accomplish di�cult proofs. In the hands of skilled
practitioners, the Boyer-Moore prover has been used to prove program and hardware
correctness [BHMY89,Hun87], as well as mathematical theorems, including the auto-
mated proof of G�odel's incompleteness theorem undertaken by Shankar for his doctoral
dissertation [Sha94].

Other productive approaches to automatic theorem proving have included condi-
tional rewriting as found in the Rewrite Rule Laboratory (RRL) system [KZ89] and
matings as used by Andrews and his colleagues to develop a theorem prover for higher-
order logic [AMCP84].

The distinction between theorem provers and proof checkers is tenuous, typically
re
ecting the intended use of the system or the degree of automation relative to other
systems, rather than hard and fast di�erences.9 Nevertheless, certain systems are more
consistently identi�ed as proof checkers. Automath, developed by de Bruijn and his
colleagues at the Technische Hogeschool in Eindhoven, The Netherlands, was one of
the earliest and most in
uential proof checkers, originating ideas subsequently used by
several modern languages and inference systems [Sha94, p. 19]. Automath provided a
grammar whose rules encoded mathematics in a way that allowed mechanized checks of
correctness for Automath statements, as illustrated in [vBJ79].

The LCF (Logic for Computable Functions) system is another in
uential proof
checker. In LCF, axioms are primitive theorems, inference rules are functions from
theorems to theorems, and typechecking guarantees that theorems are constructed only
by axioms and rules [Pau91, p. 11]. There are higher-order functions known as tactics
and control structures known as tacticals (see Section 6.1.3.3), yielding a programmable
system in which the user determines the desired level of automation. LCF has been
used to verify program properties [GMW79] and to check the correctness of a uni�ca-
tion algorithm [Pau84]. Several well-known systems have evolved from LCF, including
HOL, Nuprl, and Isabelle. HOL (Higher-Order Logic) is a widely used system with
extensive libraries that is employed primarily for veri�cation of hardware and real-time
systems. Nuprl is based on constructive type theory and was developed at Cornell Uni-
versity by Joseph Bates and Robert Constable as a mechanization of Bishop's program
of constructively reconstructing mathematics [Sha94, p.19]. The Nuprl system has been
used primarily as a research and teaching tool in the areas of constructive mathematics,
hardware veri�cation, software engineering, and computer algebra. Isabelle is a generic,
interactive theorem prover based on the typed lambda calculus, whose primary infer-
ence rule is a generalization of Horn-clause resolution. Isabelle supports proof in any
logic whose inference rules can be expressed as Horn clauses [Pau97]. Isabelle represents
a synthesis between two largely distinct traditions in automated reasoning: resolution
theorem proving and interactive theorem proving.

9For example, Shankar variously identi�es both Nqthm [Sha94] and PVS [SOR93] as theorem provers

and proof checkers.

NASA-GB-001-97 87

6.1.3 Techniques Underlying Automated Reasoning

The preceding discussion identi�ed major proving traditions including resolution, equa-
tional or rewrite systems, constructive type theory methods, Boyer-Moore-style systems,
and a variety of other methods loosely characterizable as interactive. The resulting sys-
tems can be classi�ed in various ways, including the interelated dimensions suggested by
Gordon [Gor]: type of logic supported, extensibility, degree of automation, and close-
ness to underlying logic. Generic theorem provers can be con�gured for a variety of
logics while specialized theorem provers exploit a particular application-oriented logic
(for example, temporal logic model checkers) or contain features optimized for selected
applications. There are several variations on extensibility; a theorem prover may not
be extensible, or it may o�er a metalogic (allowing the user to program the underlying
logic), an extendable infrastructure (allowing the user to program sequences of proof
steps), a re
ective capability (allowing the prover to reason about its own soundness
and thereby the soundness of proposed extensions), or a customizable syntax (ranging
from alternative notations to parser support). In general, specialized systems such as
model checkers are more automatic than general-purpose provers, all of which use some
degree of automation. Degree of automation is also in
uenced by the closeness of proof
to the underlying logic. Systems in which theorem proving di�ers little from the process
of formal proof in the underlying logic tend to be more automated than those in which
the di�erence is greater.

6.1.3.1 Calculi for First-Order Predicate Logic

In principle, inference rules may be used in one of two ways [BB89]. Starting from the
logical axioms, inference rules may be applied until the formula to be proven (valid or
unsatis�able, depending on whether the calculus is positive or negative, respectively) is
derived. This approach is called a deductive calculus. Alternatively, starting from the
formula whose validity or unsatis�ability is to be shown, inference rules may be applied
until logical axioms are derived. This second approach is termed a test calculus. The
relationship between deductive and test calculi is analogous to that between forward and
backward chaining state transition systems. As these remarks suggest, there is a variety
of di�erent calculi for �rst-order predicate logic, each o�ering a di�erent perspective on
the nature of validity [BE93]. The Gentzen calculus, including the variant known as the
sequent calculus, is a positive deductive calculus, whereas Robinson's resolution calculus
is a negative test calculus. These two calculi are introduced following a brief discussion
of normal forms for predicate logic formulas. A survey of logical calculi may be found
in [BE93].

6.1.3.1.1 Normal Forms

Normal forms are standardized formats intended to make predicate logic formulas
easier to understand and manipulate. This section considers two such forms: prenex

normal form and skolem normal form. Valid formulas of the form A , B, including

88 Chapter 6

important (tautological) equivalences such as the laws of quanti�er distribution and
the laws of quanti�er movement, may be used (in conjuction with a variable renaming
rule to avoid unintentional variable binding) as value-preserving transformations. These
transformation rules yield a logically equivalent prenex form in which all quanti�ers oc-
cur on the left, in front of the quanti�er-free matrix [BB89]. Skolemization, named after
the Norwegian mathematician Thoralf Skolem, yields a normal form that is particularly
useful because it explicitly represents quanti�cational dependencies of assignments to
variables. Following an explanation in [BB89], a formula 8x1; : : : ; xn9yF in prenex form
may be transformed into 8x1; : : : ; xnF

�, where F� is obtained from F by replacing each
free occurrence of y with a Skolem function, fy, of the form fy(x1; : : : ; xn). The process
of skolemization is not model-preserving, that is, a formula and its skolemized form are
not equivalent. However, a formula is satis�able (unsatis�able) just in case its skolem-
ized form is. Since only universal quanti�ers remain after skolemization, the quanti�ers
are often implicitly assumed, yielding formulas of the form F�.

There are various skolemization strategies. The method described here begins with
a formula in prenex form, but it is also possible to skolemize a formula that is not in
prenex form by keeping track of the essential \parity" of the quanti�er. Parity refers
to the number of negations in whose scope the quanti�er occurs. Almost all mechanical
theorem provers use some form of skolemization.

6.1.3.1.2 The Sequent Calculus

The sequent calculus is a variant of the deductive calculus developed for his disserta-
tion by the German logician Gerhard Gentzen [Gen70]. Gentzen was interested in using
syntactic inference rules to model mathematical reasoning, and he de�ned the sequent
calculus to make the assumptions on which a formula depended more transparent. This
tranparency yields a calculus that is particularly suited to computer-assisted proof be-
cause the information relevant to a given part of the proof is localized. Two additional
advantages attributed to the sequent calculus include the intuitively plausible nature of
its inference rules and their symmetric construction, yielding relatively systematic and
natural proof construction.

A sequent is written � ` �, meaning ^� � _�, where � is a (possibly empty) list
of formulas fA1; : : : ; Amg and � is a (possibly empty) list of formulas fB1; : : : ; Bng. In
a sequent � ` �, the formulas in � are called the antecedents and the formulas in �
are called the succedents or consequents. Intuitively, the conjunction of the antecedents
should imply the disjunction of the succedents, that is, A1 ^ : : : ^Am � B1 _ : : : _Bn.
A sequent calculus proof can be viewed as a tree of sequents whose root is a sequent of
the form ` A, where A is the formula to be proved and the antecedent of the sequent is
empty. The proof tree is generated by applying inference rules of the form

�1 ` �1 � � � �n ` �n

� ` �
N

NASA-GB-001-97 89

Intuitively, the rule named N takes a leaf node of a proof tree of the form � ` �
and adds the n new leaves speci�ed in the rule. If n is zero, that branch of the proof
tree terminates.

The propositional inference rules consist of the Propositional Axiom and rules for
conjunction (^), disjunction (_), implication (�), and negation (:). The Propositional
Axiom rule applies when the same formula appears in both the antecedent and succe-
dent, corresponding to the tautology (� ^A) � (A _�), where � and � consist of the
conjunction and disjunction, respectively, of their elements.

�; A ` A; �
Ax

There are two rules for each of the propositional connectives and for negation, cor-
responding to the antecedent and consequent occurrences of these connectives. The
negation rules simply state that the appearance of a formula in the antecedent is equiv-
alent to the appearance of its negated form in the succedent, and vice versa.

� ` A;�

�; :A ` �
: `

�; A ` �

� ` :A; �
` :

The inference rules : ` and ` : are often referred to as the rules for \negation on the
left" and \negation on the right," respectively. Negation on the left rule can be derived
as follows. Using the identity (X � Y) � (:X _ Y), the antecedent can be written
:� _ (A _�), which is equivalent to (:� _ A) _�, and to :(:� _ A) � �. Invoking
one of De Morgan's Laws (:(X _ Y) � (:X ^ :Y)), :(:� _ A) � � is equivalent to
(� ^ :A) � �, which is an interpretation of the succedent.

The same symmetric formulation and naming conventions are used for the other
rules, including those for the binary connectives. The rule for conjunction on the left
is a consequence of the fact that the antecedents of a sequent are implicitly conjoined;
the rule for conjunction on the right causes the proof tree to divide into two branches,
requiring a separate case for each of the two conjuncts.

A; B; � ` �

A ^B; � ` �
^ `

� ` A; � � ` B; �

� ` A ^B; �
` ^

The rules for disjunction are duals of those for conjunction.

A; � ` � B; � ` �

A _B; � ` �
_ `

� ` A; B; �

� ` A _B; �
` _

The rule for implication on the right is a consequence of the implication \built in"
to the interpretation of a sequent. The rule for implication on the left splits the proof
into two branches analogous to the two cases encountered with the rules for conjunction
on the right and disjunction on the left. Note that one case of the implication on the
left rule requires the antecedent to the implication be proved and the other case allows
the consequent of the implication to be assumed.

90 Chapter 6

� ` A; � B; � ` �

A � B; � ` �
�`

�; A ` B; �

� ` A � B; �
`�

To illustrate propositional reasoning in the sequent calculus, consider the following
proof of

(P � Q � R) � (P ^Q � R):

reproduced from [Rus93b, pp. 231-233]. The implies symbol � associates to the right
and binds less tightly than ^. This formula is actually an instance of the law of expor-
tation.

The �rst step is to contruct the goal sequent

` (P � Q � R) � (P ^Q � R):

and then seek an applicable inference rule. There is only one choice in this case: the
rule for implication on the right (with [A (P � Q � R); B (P ^ Q � R)] and �
and � empty).

(P � Q � R) ` (P ^Q � R)

` (P � Q � R) � (P ^Q � R)
`�

Considering the sequent above the line

(P � Q � R) ` (P ^Q � R)

there are two choices for the next step: implication on the left or implication on the
right. Implication on the left will cause the proof tree to branch. Since it is usually best
to delay branching as long as possible, implication on the right is the best option (this
time with [� (P � Q � R); A P ^Q;B R] and � empty)

(P � Q � R); (P ^Q) ` R

(P � Q � R) ` (P ^Q � R)
`�

Focusing once again on the sequent above the line

(P � Q � R); (P ^Q) ` R

there are two options: implication on the left or conjunction on the left. As in the last
step, the strategy of delaying branching as long as possible narrows the choice. Applying
conjunction on the left yields

(P � Q � R); P;Q ` R

(P � Q � R); (P ^Q) ` R
^ `

Now the sequent above the line is

(P � Q � R); P;Q ` R

NASA-GB-001-97 91

and the only choice is to use the rule for implication on the left

(Q � R); P;Q ` R P;Q ` P;R

(P � Q � R); P;Q ` R
�`

The right branch can be closed immediately10

P;Q ` P;R
Ax

The left branch requires another application of the rule for implication on the left:

R;P;Q ` R P;Q ` Q;R

(Q � R); P;Q ` R
�`

The left and right branches can then be closed:

R;P;Q ` R
Ax

P;Q ` Q;R
Ax

Since all the branches are closed, the theorem is proved.
The preceding steps can be collected into the following \proof tree" representation:

R;P;Q ` R
Ax

P;Q ` Q;R
Ax

(Q � R); P;Q ` R
�`

P;Q ` P;R
Ax

(P � Q � R); P;Q ` R

(P � Q � R); (P ^Q) ` R
^ `

(P � Q � R) ` (P ^Q � R)
`�

` (P � Q � R) � (P ^Q � R)
`�

�`

First-order sequent calculus extends the propositional sequent calculus presented
above with inference rules for universal and existential quanti�cation and with an in-
ference rule for nonlogical axioms.11 In the statement of the quanti�er rules, a is a new
constant (that is, a constant that does not occur in the consequent of the sequent) and
t is a term.

10Strictly speaking, it is �rst necessary to use an Exchange rule to reorder the formulas in the an-

tecedent, and similarly for closure of the left branch, below. The Exchange rules are introduced at the

end of this section.
11Technically, it is also convenient to modify the propositional axiom to allow not only for the case

where the formula in the antecedent is the same as that in the consequent, but also for the case of two

syntactically equivalent formulas, that is, formulas that are the same modulo the renaming of bound

variables.

92 Chapter 6

�; A[x t] ` �

�; (8x : A) ` �
8 `

� ` A[x a]; �

� ` (8x : A); �
` 8

�; A[x a] ` �

�; (9x : A) ` �
9 `

� ` A[x t]; �

� ` (9x : A); �
` 9

The quanti�er rules are the sequent calculus analog of skolemization (cf. Sec-
tion 6.1.3.1.1). The basic idea is that to prove a universally quanti�ed formula, it
is su�cient to show that the formula holds for an arbitrary constant (a), and to prove
an existentially quanti�ed formula, it is only necessary to show that the formula holds
for a given term (t). The four quanti�er rules re
ect the underlying duality between
universal and existential quanti�cation.

The rule for nonlogical axioms is used to terminate a branch of the proof tree when
a nonlogical axiom or previously proved lemma appears in the consequent of a sequent.

� ` A; �
Nonlog-ax

where A is a nonlogical axiom or previously proved lemma.

For convenience in developing proofs, it is useful to provide an additional rule called
\cut" as a mechanism for introducing a case-split or lemma into the proof of a sequent
� ` � to yield the subgoals �; A ` � and � ` A;�. The subgoals are equivalent
to assuming A along one branch and having to prove it on the other. Alternatively,
applying the rule for negation on the right, the subgoals are equivalent to assuming A
along one branch and :A along the other.

A; � ` � � ` A; �

� ` �
Cut

The Cut rule can be omitted; a well-known result in proof theory, the Cut Elimi-
nation Theorem (also known as Gentzen's Hauptsatz), establishes that any derivation
involving the cut rule can be converted to another (possibly much longer proof) that
does not use cut. Since cut is the only rule in which a formula (A) appears above the
line that does not also appear below it, it is the only rule whose use requires \inven-
tion" or \insight"; thus, the cut elimination theorem provides the foundation for another
demonstration of the semi-decidability of the predicate calculus [Rus93b, p. 244].

Finally, there are four structural rules that simply allow the sequent to be rearranged
or weakened. These rules have the same status as the Cut rule; they can also be omitted.
The Exchange rules allow formulas in the antecedent and consequent to be reordered.

�1; B; A; �2 ` �

�1; A; B; �2 ` �
X `

� ` �1; B; A; �2

� ` �1; A; B; �2

` X

NASA-GB-001-97 93

The Contraction rules allow multiple occurrences of the same sequent formula to be
replaced by a single occurrence.12

A; A; � ` �

A; � ` �
C `

� ` A; A; �

� ` A; �
` C

6.1.3.1.3 The Resolution Calculus

The resolution calculus is a negative test calculus for formulas in clausal form13; it
contains a single logical axiom and uses only one rule of inference, the resolution rule.
The single axiom is an elementary contradiction denoted by the empty clause (2). In
its simplest form, the resolution rule may be viewed as a special instance of the cut rule
(of the sequent calculus) in which all single formulas are literals [BB89, p. 56]. Using
notation from [BB89], the resolution rule is de�ned as follows.

clause1 : L; K1; : : : ;Kn

clause2 : :L; M1; : : : ;Mm

resolvent : K1; : : : ;Kn M1; : : : ;Mn

where clauses 1 and 2 are referred to as the parent clauses of the resolvent and L and
:L are the resolution literals.

A generalization of this rule allows an instantiation of the formulas in terms of
a substitution that maps variables to terms uniformly across both resolution literals.
Using the same notation, the general resolution rule is expressed as shown below, where
� represents a substitution that makes the atoms L and L0 equal, that is, �L = �L0.

clause1 : L; K1; : : : ;Kn

clause2 : :L0; M1; : : : ;Mm

resolvent : �K1; : : : ; �Kn �M1; : : : ; �Mn

If a substitution, � exists for two expressions, the expressions are said to be uni�able and
the substitution is called a uni�er for the two expressions. Given a pair of expressions,
there are distinguished uni�ers, known as the most general uni�ers from which all other
uni�ers may be derived by instantiation.

The following examples are taken from [BB89]. The terms x and f(y) are uni�able.
The substitution fx f(y); y ag is a uni�er for x and f(y), although it is not a
most general one, since it can be obtained from the most general uni�er fx f(y)g by
further instantiating y with a. There are two equivalent most general uni�ers for the
pair of terms f(x; g(x)) and f(y; g(y)): fx yg and fy xg, which di�er only with
respect to variable names. The terms x and f(x) are not uni�able. Neither are the
terms g(x) and f(x).

12The structural rules (Contraction and Exchange) are sometimes formulated in terms of a single

weakening rule.
13That is, a disjunction of literals, where a literal is a proposition or a negated proposition. Quan-

ti�ers are not permitted. Universal quanti�ers are implicit, and existential quantifers are replaced by

Skolem functions as described in Section 6.1.3.1.1. For example, in clausal form, 8x9yR(x;y) becomes

R(x; f(x)).

94 Chapter 6

Resolution is a complete refutation procedure for �rst-order logic. If a sentence is
false under all interpretations over all domains|that is, unsatis�able, then resolution
will terminate with the empty clause indicating a contradiction has been derived. If
the negation is unsatis�able, the original theorem is true. If the original theorem is
not true, resolution may not terminate. The proof of the completeness of resolution
is based on a result from Jacques Herbrand's 1930 dissertation. Roughly, Herbrand's
theorem states that in proving a set of clauses, S, unsatis�able, the only substitutions
that need to be tried are those drawn from the set, H, of all variable-free terms formed
from the functions (including constant functions) occurring in S. The set, H, is known
as the Herbrand Universe of S. Since H is always either �nite or countably in�nite, a
contradiction, if one exists, will always be found [CL73].

Resolution theorem provers can be highly e�ective in some domains. In general,
they have not been used in formal methods because it has been di�cult to combine res-
olution with induction and with the additional �rst-order theories necessary for formal
methods applications. Furthermore, resolution methods do not readily support proof
exploration and typically yield proofs that are not easily understood by humans. Nev-
ertheless, fundamental techniques from resolution-based provers, such as highly e�cient
uni�cation algorithms, have been incorporated in most modern theorem provers.

6.1.3.2 Extending the Predicate Calculus

The predicate calculus is not su�cient for most applications of formal methods, which
typically require the addition of �rst-order theories such as equality, arithmetic, simple
computer science datatypes (lists, trees, arrays, and so forth), and set theory. These
four theories are basic to most applications. Particular applications may bene�t (sig-
ni�cantly) from the inclusion of additional �rst-order theories. Formal methods also
require support for induction. In general, methods for automating inductive proofs are
less well-developed, and user guidance is typically required for such proofs. A discussion
of the current status of automated induction and the role of induction in formal meth-
ods appears in [Rus96]. The discussion includes an interesting fragment drawn from a
speci�cation of Byzantine fault-tolerant clock synchronization.

The next three sections summarize some of the issues involved in developing �rst-
order theories for equality and arithmetic, and introduce the topic of combinations of
theories.

6.1.3.2.1 Reasoning about Equality

The fundamental notion of equality is that if x and y are equal, then x and y have
all properties in common, that is, x = y if and only if, x has every property that y
has and, conversely, y has every property that x has. This idea was �rst formulated by
Leibniz and is also referred to as \Leibniz's Law" [Tar76, p. 55]. Equality is re
exive,
symmetric, and transitive and is therefore an equivalence relation. However, equality
also satis�es the property of substitutivity (that is, equals may always be substituted
for equals) and is thereby distinguished from mere equivalence relations.

NASA-GB-001-97 95

A model for a �rst-order theory with equality that interprets \=" as the identity
relation on the domain of interpretation is referred to as a normal model. Since it is
possible to show that a �rst-order system with equality has a model if and only if it
has a normal model, nothing is lost by restricting the focus to a normal model. An
initial model is one without \confusion" or \junk," where confusion and junk may be
informally de�ned as the ability to assign elements to terms in a way that simultaneously
preserves as distinct those terms not required to be equal by the axioms (no confusion)
and leaves no element unassigned (no junk).

The sequent calculus rules for equality directly encode the axiom for re
exivity
(that states that everything equals itself) and Leibniz's rule. The rules of transitivity
and symmetry for equality can be derived from these rules. The notation A[e] denotes
occurrences of e in A in which no free occurrences of variables of e appear bound in A[e]
and, similarly, for �[e]. mathbfRefl additionally requires that a and b be syntactically
equivalent, that is, a � b,

� ` a = b;�
Re
 if a � b

a = b;�[b] ` �[b]

a = b;�[a] ` �[a]
Repl

Reasoning about equality is so basic that most theorem provers use very e�cient
methods to handle the chains of equality reasoning that invariably arise in automated
theorem proving. Examples include e�cient algorithms for computing the congruence
closure relation on the graph representing the terms in a ground formula14 [Sho78b,
DST80,NO79].

Equations also commonly arise in the form of de�nitions, such as that for the absolute
value function15:

jxj = if x < 0 then � x else x:

One way to prove a theorem such as ja + bj � jaj + jbj is to expand the de�nitions
and then perform propositional and arithmetic reasoning. \Expanding a de�nition"
involves �nding a substitution for the left side of the de�nition that causes it to match
a term in the formula (for example, [x a + b] will match jxj with ja + bj), and then
replacing that term by the corresponding substitution instance of the right side of the
given de�nition|for example,

ja+ bj = if a+ b < 0 then � (a+ b) else a+ b:

Expanding de�nitions is a special case of the more general technique of rewriting . \The
basic idea is to impose directionality on the use of equations in proofs; . . . directed
equations are used to compute by repeatedly replacing subterms of a given formula
with equal terms until the simplest form possible is obtained." [DJ90] The notion of
directed equation refers to the fact that although equations are symmetric|a = b

means the same thing as b = a|rewriting imposes a left-to-right orientation, hence

14A ground formula is one in which there are no occurrences of free variables.
15This and the following example are reproduced from [Rus93b].

96 Chapter 6

equations viewed with this orientation are generally called rewrite rules. Rewriting
may be used with arbitrary equations provided the free variables appearing on the
right side of each equation are a subset of those appearing on its left. The process of
identifying substitutions for the free variables in the left side of the formula of interest
as a prerequisite to rewriting is called matching . Matching is sometimes referred to as
\one way" uni�cation; although the process is essentially the same, only substitutions
for the variables in the equation being matched are of interest.

Rewriting may be automated or performed by the user. Two desirable properties
of rewrite rules are �nite termination and unique termination, also known as Church-
Rosser. A set of rewrite rules has the �nite termination property if rewriting always
terminates. A set of rewrite rules is Church-Rosser if the �nal result after rewriting
to termination is independent of the order in which the rules are applied. There are
e�ective heuristic procedures for testing for the �nite and unique termination properties,
including Knuth-Bendix completion [KB70,DJ90], which can often be used to extend
a set of rewrite rules that is not Church-Rosser into one that is. A theory that can be
speci�ed by a set of rewrite rules with both the �nite and unique termination properties
may be used as a decision procedure for that theory. Moreover, any such decision
procedure is sound and, for ground formulas, complete. However, deducing disequalities
is sound and complete only for the initial model. Therefore, systems that use rewriting
to normal form as their primary or only means of deduction typically use an initial
model semantics, whereas systems that use rewriting in conjuction with other methods
typically use a classical semantics and (only) infer disequalities axiomatically.

There are several variations on rewriting, including order-sorted rewriting, condi-
tional rewriting, priority rewriting, and graph rewriting. A description of these variants
appears in the comprehensive survey of rewrite systems provided in [DJ90].

Term rewriting is highly e�ective, and essential to the productive use of theorem
proving for formal methods applications. It serves as the primary means of deduction
in A�rm [GMT+80,Mus80], Larch [wSJGJMW93], and RRL [KZ89] and is one of the
most important techniques in the Boyer-Moore provers [BM88,KM96]. Rewriting may
also be used for computation [GKK+88]. The paramodulation techniques [RW69] used
in resolution are similar to rewriting.

6.1.3.2.2 Reasoning about Arithmetic

Formal methods applications typically involve arithmetic expressions and relations
over both real and natural numbers, and both interpreted and uninterpreted function
symbols. The ubiquity and often the complexity of this arithmetic make e�cient deduc-
tive support for arithmetic essential to the productive use of formal methods [Rus96].
Integer arithmetic is su�ciently important that some formal methods systems include
decision procedures for the quanti�ed theory of integer arithmetic, often referred to
as Presburger arithmetic after the Polish mathematician who �rst studied these arith-
metics in the late 1920s. The decidable fragment essentially includes linear arithmetics
with addition, subtraction, multiplication, equality, the \less than" predicate (<), and,

NASA-GB-001-97 97

by simple constructions, the predicates >, �, �. Classic Presburger arithmetic, which
contains neither function symbols nor anything other than simple constants, is decid-
able. However, given the importance of function symbols and the fact that they may be
introduced into formulas in which they do not originally appear through the process of
skolemization, it is easy to appreciate the tension between e�ciency (decidability) and
expressiveness. Tools for formal methods often opt to restrict the arithmetic decision
procedures to the ground (that is, propositional) case, where the combination of linear
arithmetic with uninterpreted function symbols is decidable [CLS96].

6.1.3.2.3 Combining First-Order Theories

One of the challenges in designing a truly useful theorem prover or proof checker is
combining decidable theories both with one another and with user interaction. There
are algorithms dating back to the late 1970s for combining decision procedures, includ-
ing Nelson-Oppen [NO79] and Shostak [Sho78b,CLS96]. The Nelson-Oppen algorithm
combines decision procedures for two disjoint ground theories (for example, linear arith-
metic and lists) by \introducing variables to name subterms and iteratively propagating
any deduced equalities between variables from one theory to another" [CLS96]. Shostak
combines theories that are canonizable (that is, can be converted to a canonical or nor-
mal form) and algebraically solvable using an optimized implementation of the congru-
ence closure algorithm for ground equality over uninterpreted function symbols [CLS96].
Since Shostak's approach appears to be very e�cient, but is restricted to algebraically
solvable theories, there is some interest in combining it with Nelson-Oppen.

Most automated theorem provers and proof checkers minimally contain implementa-
tions of decision theories for propositional logic, equality, and linear arithmetic. Cyrluk
et al. note that the method used to combine decision procedures is more critical to
the overall e�ciency of the system than the e�ciency of any single decision proce-
dure [CLS96]. Therefore, it is important that new decision procedures, such as those
that arise in response to needs identi�ed in formal methods applications, work e�ectively
in combination with other theories.

6.1.3.3 Mechanization of Proof in the Sequent Calculus

This section illustrates how the proof of (P � Q � R) � (P ^ Q � R) from Sec-
tion 6.1.3.1.2 might proceed with the help of an interactive theorem prover built on the
sequent calculus style of reasoning. The presentation assumes that the formula has been
introduced to the toolset and given the name \theorem 1." Invoking a proof attempt on
this theorem places the user at the theorem prover's interactive interface. Intermediate
sequents developed during the course of the proof are displayed, allowing the user to
guide the proof at each step.

Beginning proof of "theorem_1":

Antecedents:

98 Chapter 6

None

=======>

Consequents:

Formula 1: (P => (Q => R)) => ((P & Q) => R)

The imaginary prover used in this example displays sequents in the format shown above.
Actual provers use similar formats, although they are usually less verbose.

The theorem prover's interaction style is based on the user's entry of a command to
invoke a proof step, and the prover's display of the results of that command. Application
of inference rules is the main type of command, with various supporting utility functions,
such as proof status and proof display commands, provided as well.

Step 1: apply-rule "implies-right"

Applying rule "implies-right" to the current sequent yields:

Antecedents:

Formula 1: P => (Q => R)

=======>

Consequents:

Formula 1: (P & Q) => R

The user would type the command after the \Step 1:" prompt shown above. In this
case, the inference rule causes a new sequent to be generated, as shown.

Step 2: apply-rule "implies-right"

Applying rule "implies-right" to the current sequent yields:

Antecedents:

Formula 1: P => (Q => R)

Formula 2: P & Q

=======>

Consequents:

Formula 1: R

A second application of the \implies-right" rule creates multiple antecedents. De-
pending on the formulas involved, this might mean future commands could apply to
more than one formula. The prover would have to pick one by default or require the
user to specify the formula.

Step 3: apply-rule "and-left"

NASA-GB-001-97 99

Applying rule "and-left" to the current sequent yields:

Antecedents:

Formula 1: P => (Q => R)

Formula 2: P

Formula 3: Q

=======>

Consequents:

Formula 1: R

At this point, the proof has progressed without branching, but case splitting will
now be required. The next rule application causes branching in the proof tree, for which
the prover supplies suitable node numbers to keep track of current and future locations.

Step 4: apply-rule "implies-left"

Applying rule "implies-left" to the current sequent produces

two cases, the first of which, case 4.1, is as follows:

Antecedents:

Formula 1: Q => R

Formula 2: P

Formula 3: Q

=======>

Consequents:

Formula 1: R

Only one branch can be pursued at a time. The prover will automatically return to the
second branch after the current one is completed.

Case 4.1, step 1: apply-rule "implies-left"

Applying rule "implies-left" to the current sequent produces

two cases, the first of which, case 4.1.1, is as follows:

Antecedents:

Formula 1: R

Formula 2: P

Formula 3: Q

=======>

Consequents:

Formula 1: R

100 Chapter 6

A second application of the same rule causes further case splitting. Systematic naviga-
tion of the proof tree helps the user keep his or her bearings.

The current branch can be terminated by applying the Propositional Axiom that
acknowledges when the sequent is a tautology. Normally, a user need not explicitly
invoke this rule; most provers will recognize such opportunities and apply the rule
automatically.

Case 4.1.1, step 1: apply-rule "prop-axiom"

Applying rule "prop-axiom" to the current sequent completes the

proof of case 4.1.1.

Resuming with case 4.1.2:

Antecedents:

Formula 1: P

Formula 2: Q

=======>

Consequents:

Formula 1: Q

Formula 2: R

After dispensing with one branch of case 4.1, the prover presents the user with the other
branch, and the \prop-axiom" rule applies again.

Case 4.1.2, step 1: apply-rule "prop-axiom"

Applying rule "prop-axiom" to the current sequent completes the

proof of case 4.1.2. This also completes the proof of case 4.1.

Resuming with case 4.2:

Antecedents:

Formula 1: P

Formula 2: Q

=======>

Consequents:

Formula 1: P

Formula 2: R

After �nishing all of case 4.1, the prover pops back up to case 4.2 to �nish o� the
only remaining branch of the proof.

NASA-GB-001-97 101

Case 4.2, step 1: apply-rule "prop-axiom"

Applying rule "prop-axiom" to the current sequent completes the

proof of case 4.2. This also completes the proof of "theorem_1".

Q.E.D.

Recognizing that all branches of the tree have resulted in valid proofs, the prover an-
nounces the successful completion of the overall proof.

Although this example has been cast in terms of a �ctitious theorem prover, many
actual provers follow a similar style of interaction. Level of automation, and therefore
the nature of the interaction, varies considerably from one prover to another. For
example, the level of automation may make it unnecessary to invoke rules at the level of
detail presented here. Although the prover typically builds the full proof tree, the user
generally sees only those portions of the tree requiring user guidance. Trivial cases are
typically not displayed, although there may be a facility for revisiting both the implicit
and explicit steps of a proof. On �rst attempt, most putative theorems attempted are
incorrect, that is, they are not in fact theorems. Therefore it is at least as important
that an automated deduction system facilitate the discovery of error, as that it should
e�ciently prove true theorems.

In addition to mechanizing routine manipulations, automated deduction systems
should reduce the low-level interaction and repetitive tedium involved in large proofs.
To this end, many interactive provers provide higher-order functions known as tactics
and control structures known as tacticals that allow simple tactics to be combined into
more complex ones. Paulson [Pau92, p. 456] notes that ideally tactics should capture the
control structures typically used in describing proofs. He also remarks that, in practice,
tactics often do not work at the level of proof description, but rather at a somewhat
lower level. Nevertheless, tacticals potentially allow the user to perform hundreds of
inferences with a single command. The concept and implementation of tactics and
tacticals varies from prover to prover, but all share the idea that a theorem prover
should be programmable. The challenge in using any automated reasoning system is to
learn to use the automation e�ectively by exploiting the system's strengths and realizing
its limitations.

Given the number and diversity of automated reasoning systems, the question invari-
ably arises as to which system is most appropriate for a given application. Young [You95]
suggests the use of benchmark problems to facilitate comparison of system performance
within speci�c areas. Although standard benchmarks have yet to be identi�ed, there
are problems, such as the railroad gate controller [HL94] in the area of safety-critical
systems, that have been attempted on a variety of systems.

102 Chapter 6

6.1.4 Utility of Automated Deduction

Deductive techniques support more varied and more abstract models, more expressive
speci�cation, more varied properties, and more reusable veri�cations than �nite state
veri�cation techniques. The essential utility of theorem proving or proof checking in-
cludes the following. With the exception of establishing the consistency of axioms, these
bene�ts are self-explanatory and are listed with little additional comment.

� Guarantee Type Correctness: The type correctness of some speci�cation languages
is undecidable. In such cases, theorem proving or proof checking may be used to
discharge obligations incurred during typechecking, thereby establishing that a
speci�cation is type-correct. As noted in Chapter 5, signi�cant bene�t accrues
from typechecking alone.

� Establish (Relative) Consistency of Axioms: A speci�cation can be shown to be
consistent by demonstrating that its axioms have a model. In the context of
mechanical veri�cation, this is accomplished via theory intepretations that re-
late a source speci�cation (the one to be shown consistent) to a target speci-
�cation whose consistency has presumably already been established16. This is
accomplished by de�ning a mapping from the types and constants of the source
speci�cation to those of the target speci�cation and proving that the axioms of
the source speci�cation expressed in terms of that mapping are provable theo-
rems of the target speci�cation. The proof demonstrates relative consistency;
that is, if the target speci�cation is consistent, the source speci�cation is consis-
tent. [ORSvH95, p. 111] cites an example that underscores the need to validate
axiomatic speci�cations by exhibiting an intended model.

� Challenge Underlying Assumptions: One of the bene�ts of formal speci�cation
is the explicit statement of underlying assumptions. Once formalized, these as-
sumptions may be challenged by formulating and proving conjectures that exer-
cise them. Design implications of new or modi�ed assumptions may be similarly
probed in this way.

� Establish the Correctness of Hierarchical Layers: Theory interpretations may also
be used to demonstrate the correctness of hierarchical development, that is, to
prove that a more concrete speci�cation is a satisfactory implementation of a
more abstract one, as illustrated in [Bev89,BDH94]. The approach is similar to
that previously mentioned in the context of establishing the consistency of a set
of axioms.

� Con�rm Key Properties and Invariants: System properties and constraints may
be precisely stated and deductively veri�ed.

16For example, by specifying the target speci�cation de�nitionally in a system that guarantees con-

servative extension.

NASA-GB-001-97 103

� Predict and Calculate System Behavior: System behavior may be predicted or
calculated by formulating and proving challenges or putative theorems that char-
acterize the behavior or functionality of interest.

� Facilitate Replication and Reuse: Reusing and adapting extant proofs, as well as
formulating new challenges, provides a systematic exploration of the implications
of changes and extensions, as well as an e�ective vehicle for generalizing results for
later reuse. Automation is the key to faithfully replicating or reusing a detailed
deduction. The LaRC bit vectors library [BMS+96] illustrates many of the issues
involved in developing general and e�ectively reusable formal analyses.

The use of proof as a form of absolute guarantee is not included in this list for reasons
outlined in Section 7.5, and succinctly captured in the following quote from [RvH93]: \A
mechanical theorem prover does not act as an oracle that certi�es bewildering arguments
for inscrutable reasons, but as an implacable skeptic that insists on all assumptions being
stated and all claims justi�ed."

6.2 Finite-State Methods

The state space of a system can be loosely de�ned as the full range of values assumed
by the state variables of the program or speci�cation that describes it. The behaviors
that the system can exhibit can then be enumerated in terms of this range of values. If
the state space is �nite and reasonably small, it is possible to systematically enumerate
all possible behaviors of the system. However, few interesting systems have tractable
state spaces. Furthermore, the state space of a formal speci�cation can be in�nite, for
example, if it uses true mathematical integers as values for state variables. Nevertheless,
there are various techniques for \downscaling" or reducing the state space of a system,
while preserving its essential properties. Finite-state methods refer to techniques for
the automatic veri�cation of these �nite-state systems or of in�nite-state systems that
can be similarly \reduced" by virtue of certain structural symmetries or uniformities.
Given a formula specifying a desired system property, these methods determine its truth
or falsity in a speci�c �nite model (rather than proving its validity for all models). For
linear-time and branching-time logics, the model checking problem is computationally
tractable, whereas the validity problem is intractable.

6.2.1 Background

This section provides background information useful for an understanding of �nite-state
systems, including a brief introduction to temporal logics, �xed point characterizations,
and the modal mu-calculus.

104 Chapter 6

6.2.1.1 Temporal Logic

Temporal logic (also known as tense logic) [Pnu77,Bur84] augments the standard opera-
tors of propositional logic with tense operators that are used to formalize time-dependent
conditions. The simplest temporal logic adds just two operators: the (weak) future op-
erator, F , and the (weak) past operator, P . The formula Fq is true in the present if q
is true at some time in the future and, similarly, the formula Pq is true in the present
if q is true at some time in the past. These operators can be combined to assert quite
complex statements about time-dependent phenomena. For example, q) FPq can be
interpreted as \if q holds in the present, than at some time in the future q will have
held in the past." [McM93, p. 13] The duals of these operators, :F:, usually abbre-
viated G and :P:, usually abbreviated H, yield the corresponding strong future and
past operators. Gq � :F:q means that q is true at every moment in the future, and
Hq � :P:q means that q is true at every moment in the past.

A temporal logic system consists of a complete set of axioms and inference rules
for proving all valid statements in the logic relative to a given model of time. Some
of the more commonly used models include partially ordered time, linearly ordered
time, discrete time, and branching (nondeterministic) time. Linear time corresponds
to commonly held notions of time as a linearly ordered set measured with either the
real or natural numbers. Discrete time refers to a model in which time is represented
as a discrete sequence measured by the integers, as commonly found in engineering.
Interval Temporal Logic [Mos85] is based on discrete time. Branching time is a model
in which the temporal order < de�nes a tree that branches toward the future; every
instant has a unique past, but an indeterminate future [McM93, p. 15]. Temporal
logic and the closely related dynamic logic17 have been used to express program prop-
erties such as termination, correctness, safety, deadlock freedom, clean behavior, data
integrity, accessibility, responsiveness, and fair scheduling [Bur84, p. 95]. Duration Cal-
culus [CHR92], a notation used to specify and verify real-time systems, is an extension
of interval temporal logic that uses a notion of durations of states within a time inter-
val, but without explicit mention of absolute time. Temporal logics, and modal logics
in general, are typically given a model theoretic semantics known as possible worlds

semantics. A model in this semantics is usually referred to as a Kripke model, after
Saul Kripke, one of the �rst mathematicians to give a model-theoretic interpretation of
modal logic [Kri63a,Kri63b,Kri65]. The basic idea of Kripke semantics is to relativize
the truth of a statement to temporal stages or states. Accordingly, a statement is not
simply true, but true at a particular state. The states are temporally ordered, with the
type of temporal order determined by the choice of axioms.

17The term \dynamic logic" refers generically to logical systems used to reason about computer

programs. The basic premise is that certain classical logical systems that are inherently \static" can be

extended quite naturally to reason about \dynamics." In addition to its application to computational

systems, the study of dynamic logic and related topics has more general philosophical and mathematical

implications as a natural extension of modal logic to general dynamic situations [Har84].

NASA-GB-001-97 105

For example, the so-called minimal tense logic, Kt, is de�ned by van Benthem as
follows [vB88, p. 7].

� Axioms:

1. all propositional tautologies

2. G(�!)! (G�! G)

3. H(�!)! (H�! H)

4. �! HF�

5. �! GP�

� De�nition:

1. F�$:G:�

2. P�$:H:�

� Rules of Inference:

1. �; �! = (Modus Ponens)

2. if � is a theorem, then so are G�, H� ((Temporal) Generalization)

Various axioms may be added to Kt to characterize further assumptions on the
temporal order, such as transitivity and antisymmetry (which together yield a partial
order), as well as density, linearity, and so forth. In the context of �nite state methods,
the notions of linear time and branching time are of particular interest.
�

The set of states in an interpretation represents not only past states, but all accessible
(possible) future states. Furthermore, truth is persistent. Intuitively, this means that a
sentence true at a given state will always be true at later states. The following de�nitions
are due to Burgess [Bur84, pp. 93-4]. A Kripke frame is composed of a nonempty set
S, equipped with a binary relation R. A valuation in a frame (S;R) is a function, V ,
that assigns to each variable, pi, a subset of S, and each (syntactically well-formed)
sentence a truth value. Intuitively, S represents the set of states and R represents the
earlier-later relation. A formula, � is valid in a frame (S;R) if V (�) = X for every
valuation V in (X;R). � is satis�able in (X;R) if V (�) 6= ;18 for some valuation V in
(S;R), or, equivalently if :� is not valid in (S;R). In addition, � is valid over a class,
K, of frames if it is valid in every (S;R) 2 K, and is satis�able over K if it is satis�able
in some (S;R) 2 K or, equivalently, if :� is not valid over K.

The interaction of universal and existential quanti�cation with temporal operators
is complex, introducing both philosophical and technical di�culties. Burgess [Bur84,

18
; denotes the empty set.

106 Chapter 6

p. 131] notes that the philosophical issues include \identity through changes, continuity,
motion and change, reference to what no longer exists or does not exist, essence and
many, many more" and the technical issues include \undecidability, nonaxiomatizability,
unde�nability or multidimensional operators, and so forth." Thoughtful discussion of
these issues can be found in [Gar84] and [Coc84].

�

6.2.1.2 Linear Temporal Logic (LTL)

Linear time corresponds to the usual notion of time as a linearly ordered set, measured
either with the real or the natural numbers. The temporal order relation < is total, that
is, antisymmetric, transitive, and comparable. Comparability means that for all states
s1 and s2 in the same execution sequence, either s1 < s2 or s2 < s1 or s1 = s2). The
extension of Kt obtained by adding the following two axioms (of right- and left-linearity,
respectively) characterizes the linear temporal frames.

1. (F� ^ F)! F (� ^ F) _ F (� ^) _ F (^ F�)

2. (P� ^ P)! P (� ^ P) _ P (� ^) _ P (^ P�)

Alternatively, the following, somewhat more intuitive axioms can be used to char-
acterize total orders [Bur84, p. 104].

1. (FP�)! (P� _ � _ F�)

2. (PF�)! (P� _ � _ F�)

Linear temporal logic is typically extended by two additional operators, the until

operator and the since operator, abbreviated U and S, respectively.
�

The following de�nitions are based on a discussion in [McM93, p. 14] and assume
that all subscripted states, s::, are comparable. � U is true in state sj if there is some
state sk such that sj < sk and is true in sk, and for all si, such that sj < si < sk,
� is true in state si. Intuitively, holds at some time in the future, until which time
� holds. Similarly, �S is true in state sj just in case there is some state sk such that
sk < sj and is true in sk, and for all si, such that sk < si < sj, � is true in state si.
Informally, held at some time in the past, since which time � has held.

�

6.2.1.3 Branching Time Temporal Logic

A treelike or branching frame is one in which the temporal order de�nes a tree that
branches toward the future. Treelike frames represent ways in which things can evolve

NASA-GB-001-97 107

nondeterministically; every moment or state has a unique, linearly ordered past, but an
indeterminate future. Following Thomason [Tho84, p. 142], a treelike frame for a tense
logic consists of a pair hT;<i, where T is a nonempty set and < is a transitive ordering
on T such that if t1 < t and t2 < t, then either t1 = t2 or t1 < t2 or t2 < t1. The
tree-ordered frames can be characterized by dropping the axiom

(PF�)! (P� _ � _ F�)

from the axioms of linear time logic. A branch through t 2 T is a maximal linearly
ordered subset of T containing t.
�

The semantics for branching time temporal logic are somewhat problematic. As
Thomason [Tho84, p. 142] notes, interpreting future tense in these treelike structures
can be perplexing. For example, take a simple structure with three moments, the root,
t0, and two branches labeled t1 and t2, respectively. Assume � true at t0 and t1 and
false at t2. Is F� true at t0? It is hard to say. The answer involves technical issues that
revolve around the reconciliation of tense with indeterminism. The logical argument for
determinism claims that it is not possible to provide a correct de�nition of satisfaction
for these structures, that is, to provide a de�nition that does not generate validities
that are incompatible with the intended interpretation. Thomason [Tho84] presents
an interesting discussion of strategies advanced by indeterminists to circumvent these
claims.

�
The propositional branching time temporal logics that provide the foundation for one

of the principal approaches to �nite state veri�cation of concurrent systems are called
Computational Tree Logics. There are basically two variants: CTL and CTL*. The
logic CTL* combines both branching-time and linear-time operators. A (computational)
path quanti�er, either A or E, denoting all or some paths, respectively, can pre�x
assertions composed of arbitrary combinations of the linear time operators G, F, U,
and the \nexttime" operator, X (see below). There are two types of formulas in CTL*:
state formulas that are true in a given state and path formulas that hold along a given
path. The following de�nitions are taken from [CGK89, pp. 83-84]. Let AP be the set
of atomic proposition names.
A state formula is either:

� A, if A 2 AP .

� If f and g are state formulas, then :f and f _ g are state formulas.

� If f is a path formula, then E(f) is a state formula.

A path formula is either:

� A state formula.

108 Chapter 6

� If f and g are path formulas, then :f , f _ g, Xf and fUg are path formulas.

CTL* is the set of formulas generated by the above rules. CTL is a restricted subset
of CTL* that permits only branching-time operators. CTL is obtained by limiting the
syntax for path formulas to the following rule.

� If f and g are state formulas, Xf and fUg are path formulas.

The following abbreviations are also used in writing CTL* and CTL formulas:

� f ^ g � :(:f _ :g)

� A(f) � :E(:f)

� F(f) � trueUf

� G(f) � :F:f

�

The semantics of CTL* are de�ned with respect to a (�nite Kripke) structure K =
hW;R;Li, where

� W is a set of states or worlds.

� R � W � W is the transition relation. R is total. w1 ! w2 indicates that
(w1; w2) 2 R.

� L : W ! P (AP) is a function that labels each state with a set of atomic proposi-
tions true in that state.

Let f1 and f2 be state formulas, g1 and g2 be path formulas. A path in K is de�ned
as a sequence of states � = w0; w1; : : : such that for every i � 0; wi ! wi+1. �

i denotes
the su�x of � starting at wi. K;w j= f means that f holds at state w in structure K.
Similarly, if g is a path formula, K;� j= g means that g holds along path � in structure
K. The relation j= is inductively de�ned as follows.

� w j= A IFF A 2 L(w).

� w j= :f1 IFF it is not the case that w j= f1.

� w j= f1 _ f2 IFF w j= f1 or w j= f2.

� w j= E(g1) IFF there exists a path � starting with w such that � j= g1.

� � j= f1 IFF w is the �rst state of � and w j= f1.

� � j= :g1 IFF it is not the case that � j= g1.

NASA-GB-001-97 109

� � j= g1 _ g2 IFF � j= g1 or � j= g2.

� � j= Xg1 IFF �
1 j= g1.

� � j= g1Ug2 IFF there exists a k � 0 such that �k j= g2 and for all 0 � j <

k; �j j= g1.

�

6.2.1.4 Fixed Points

A functional is a function that maps functions to functions, that is, a function that
takes functions as arguments and returns functions as values. A functional may be
denoted by a lambda expression, �x:f , where x is a variable and f is a formula. The
variable x is e�ectively a place holder. When the functional is applied to a parameter,
p, p is substituted for all instances of x in f .19 For example, if � = �x:(x ^ y), then
�(true) = true ^ y = y. A functional
 is monotonic if p � q !
(p) �
(q).

The following de�nition and example are taken from a discussion in [McM93, p. 19].
A �xed point of a functional
 is any p such that
(p) = p. For example, if � is de�ned
as above, then x ^ y is a �xed point of � , since �(x ^ y) = (x ^ y) ^ y = x ^ y.

A monotonic functional has a least �xed point and a greatest �xed point, also referred
to as extremal �xed points. The least (greatest) �xed point was de�ned by Tarski [Tar55]
as the intersection (union) of all the �xed points of the functional. The least and greatest
�xed points of a functional �x:f are denoted �x:f and �x:f , respectively. Assuming
the functional is continuous, the extremal �xpoints can be characterized as the limit of
a series de�ned by iterating the functional.
�

The following de�nitions are also taken from [McM93, p. 19]. A functional,
,
is union-continuous (intersection-continuous) if the result of applying
 to the union
(intersection) of any nondecreasing in�nite sequence of sets is equal to the result of
taking the union (intersection) of
 applied to each element of the sequence. Tarski
showed that if a functional is monotonic and union-continuous, the least �xed point of
the functional is the union of the sequence generated by iterating the functional starting
with the initial value false, that is, for any such functional,
, the least �xed point is
[i

i(false). Similarly, the greatest �xed point of a monotonic, intersection-continuous
functional,
, is \i

i(true).

Any monotonic functional is necessarily continuous (that is, union-continuous and
intersection-continuous) over a �nite set of states [McM93, p. 19]. Fixed points of func-
tionals have been used to characterize CTL operators, resulting in e�cient algorithms

19The discussion assumes the usual restrictions on lambda-conversion that ensure that variables oc-

curring free in p are not bound by operators or quanti�ers in f .

110 Chapter 6

for temporal logic model checking. The standard reference for �xed point characteriza-
tions of CTL formulas is [EL86].

�

6.2.1.5 The Mu-Calculus

The mu-calculus is a logic based on extremal �xed points that is obtained by adding
a recursion operator, �, to �rst-order predicate logic (FOL) or to propositional logic.
In the context of FOL, the � operator can be viewed as an \alternative quanti�er for
relations" that replaces the standard quanti�ers 8 and 9 on relations (but not on in-
dividuals) [Par76, p. 174], while in propositional logic, the � operator provides new
n-ary connectives. Kozen [Koz83] credits Scott and De Bakker [SB69] with originat-
ing the mu-calculus and Hitchcock and Park [HP73], Park [Par70], and De Bakker
and De Roever [BR73] with inititially developing the logic. Park [Par76, p. 173] notes
that the mu-calculus was a natural response to the inability of �rst-order predicate
logic \to express interesting assertions about programs" in a reasonable way. The mu-
calculus is \strictly intermediate" in expressive power between �rst- and second-order
logics [Par76]. There are several di�erent formulations of the mu-calculus. Some, like
those of [BR73, HP73], present the calculus as a polyadic relational system that sup-
presses individual variables and replaces existential quanti�cation (9) on individuals
with a composition operator on relations [Par76]. Others, like the version below re-
produced from [McM93, pp. 114-115] and based on [Par76], retain the more traditional
system of predicate logic.

There are two kinds of mu-calculus formulas: relational formulas and Boolean formu-
las, and, correspondingly, two kinds of variables: relational variables (for example, the
transition relation, R) and individual variables (for example, the state, x). A model for
the mu-calculus is a triple M = (S; �;), where S is a set of states, � is the individual
interpretation function that maps every individual variable to an element of S, and is
the relational interpretation that maps every n-ary relational variable onto a subset of
Sn. The syntax of Boolean formulas is de�ned as follows, where p and q are syntactic
variables representing Boolean formulas, x is an individual variable, (x1; : : : ; xn) is a
vector of individual variables, and R is an n-ary relational formula.

� true and false are Boolean formulas.

� p _ q and :p are Boolean formulas.

� 9x:p is a Boolean formula.

� R(x1; : : : ; xn) is a Boolean formula.

The formula 9x:p is true just in case there exists a state x in S such that p is true in
x. Similarly, the formula R(x; y) is true just in case the pair (�(x); �(y)) is a member
of (R).

NASA-GB-001-97 111

The relational formulas are de�ned as follows, where, in addition to the de�nitions
given above, F is an n-ary relational formula that is formally monotonic in R.

� Every n-ary relational variable R is an n-ary relational formula.

� �(x1; : : : ; xn):p is an n-ary relational formula.

� �R:F and �R:F are relational formulas.20

In a given model (S; �;),

� The relational variable R is identi�ed with the relation (R).

� �(x1; : : : ; xn):p denotes the set of all n-tuples (x1; : : : ; xn) such that p is true.

� The formulas �R:F and �R:F stand for the least �xed point and greatest �xed
point (of � = �R:F), respectively.

6.2.2 A Brief History of Finite-State Methods

Finite-state methods grew out of several independent developments in the mid to late
1970s, including early work on temporal logic and early activity in protocol speci�cation
and veri�cation. Pnueli �rst proposed the use of temporal logic to reason about concur-
rent and reactive programs [Pnu77]. Formalization of safety properties for concurrent
systems followed shortly thereafter. Pnueli's early proofs were largely manual, as were
the initial techniques used to verify protocols. The realization that many concurrent
programs can be viewed as communicating �nite-state machines combined with results
in reachability analysis and the realization of their applicability to protocol analysis
soon led to techniques for automatic veri�cation of correctness properties. 21

The �rst such techniques arose in the context of protocol validation [BJ78,Haj78,
WZ78,RE80]. Shortly thereafter, in the early 1980s, Sifakis and his students at Grenoble
University in France began work on the French validation system Cesar [Que82,QS82],
and Harvard colleagues Clarke and Emerson introduced temporal logic model check-
ing algorithms [CE81] that subsequently led to the work by Clarke and his students
at Carnegie Mellon University (CMU) on the Extended Model Checker (EMC) sys-
tem [CES86]. Although Cesar and EMC represent independent developments, both
systems used algorithms for the branching-time logic CTL. The CMU system also in-
corporated slight modi�cations to CTL to accommodate fairness constraints [BCM+90].
The �rst general protocol veri�er, built by Holzmann and based on reachability analysis,
also appeared in the early 1980s [Hol81]. Holzmann's initial protocol veri�er employed
a simple process algebra, but his subsequent systems use standard automata theory. In
all three cases, this early work led to currently important systems: Holzmann's work

20� may be de�ned in terms of � (�R:F [R] = :�R::F [:R]) or speci�ed as a (primitive) �xpoint

operator as shown here.
21Initially, safety properties. Liveness and fairness followed later.

112 Chapter 6

culminated in Spin, the Grenoble e�ort produced Cesar and several specialized variants,
and CMU's EMC evolved into SMV.

Research in model checking for verifying network protocols and sequential circuits
quickly led to the realization that application of model checking techniques to nontrivial
systems required viable approaches to the so-called state explosion problem. The term
refers to the fact that in the worst case, the number of states in the global state graph
for a system with N processes may grow exponentially with N . There has been a great
deal of work on the computational complexity of model checking algorithms, as well
as on techniques to address the state explosion problem. One of the earliest and most
important techniques for CTL-based model checking systems is a symbolic, rather than
an explicit, representation of the state space. That is, the set of states is represented
by a logical formula that is satis�ed in a given state if and only if the state is a member
of the set, rather than by a labeled global state graph. Similarly signi�cant bene�ts for
LTL-based model checking have been obtained with partial order techniques [God90,
Val90,Pel93,GPS96]. For certain applications, both techniques can reduce exponential
growth of the state space to linear or sublinear growth [Hol].

To provide further economies for CTL-based model checking, symbolic representa-
tions capable of exploiting structural regularities and thereby avoiding explicit construc-
tion of the state graphs of modeled systems have been sought. The representation that is
currently most widely used is a canonical, but highly compact form for Boolean formulas
known as ordered binary decision diagrams or OBDDs [Bry86].22 An OBDD is similar
to a binary decision tree, except that its structure is a directed acyclic graph rather than
a tree and a strict order governs the occurrence of variables. Bryant [Bry86] has shown
that there is a unique minimal OBDD for a given formula under a given variable order-
ing. Variable ordering is thus critical for determining the size of the minimal OBDD
for a given formula. Although the use of symbolic representation allows signi�cantly
larger systems to be modeled, the state explosion problem persists as a computational
barrier restricting the size and complexity of systems that can be veri�ed using �nite
state methods.

Other strategies have been and continue to be proposed to address this prob-
lem. These include exploiting structural symmetries in the systems to be veri-
�ed [CFJ93,ES93, ID93], using hierarchical [MC85] and compositional [CLM89,GS90]
techniques, applying abstraction methods [CGL92, Kur94], and employing on-the-
y
intersection techniques [Hol84, CVWY92, FMJJ92]. For LTL-based model checking,
e�cient on-the-
y techniques have been a signi�cant development because on-the-
y
veri�cation algorithms require only that part of the graph structure necessary to prove
or disprove a given property, rather than the entire Kripke structure (for example, as
required by �xpoint algorithms). Compositionality and abstraction exemplify a \divide-
and-conquer" strategy that attempts to reduce the veri�cation problem to a series of

22OBBD is sometimes written simply as BDD, although as McMillan notes [McM93, p. 32], the

variable ordering (which is crucial to obtaining the canonical reduced form) is what distinguishes OBDDs

from the more general class of BDDs.

NASA-GB-001-97 113

potentially more manageable subproblems [God96, p. 17], whereas partial order and
on-the-
y methods attempt to reduce the size of the checked state space and the extent
of the search, respectively. Some of these techniques may be usefully combined. Par-
tial order and on-the-
y methods are a good example, as noted in [Pel94]. Others are
complementary. Compositional and abstraction methods, for example, are essentially
orthogonal { and thereby complementary to { partial order techniques [God96, p. 17].

6.2.3 Approaches to Finite-State Veri�cation

As noted earlier, �nite-state veri�cation techniques emerged in the late 1970s and early
1980s from two independent developments: temporal logic model checking [CE81,Que82]
and protocol analysis [Haj78,Wes78]. Subsequent developments can be classi�ed with
respect to several dimensions, re
ecting factors such as representation strategy, type
of algorithm, and class of system addressed. The distinctions made by representa-
tion strategy are broad and therefore well-suited to the general discussion o�ered here.
Representation strategy distinguishes approaches that use a �nite state representation
for the system model and a logical calculus for the speci�cation|the symbolic model
checking approach, from techniques that use �nite state machines to represent both
the system model and the speci�cation|the automata-theoretic approach. In practice,
veri�cation systems for asynchronous systems (software) are largely automata-based,
exploit on-the-
y techniques, and support LTL, while systems for synchronous systems
(hardware) are based either on �xpoint algorithms or symbolic methods, and support
CTL, CTL*, or propositional mu-calculus [Hol].

6.2.3.1 The Symbolic Model Checking Approach

In the symbolic model checking approach, veri�cation means determining whether a
given logic formula f is valid in a given Kripke model M , that is, determining which
states S in a �nite Kripke structure M = hS;R;Li satisfy f . Initially, the temporal
logics CTL, CTL*, and LTL were used. Later algorithms typically characterize the
CTL (LTL) operators (or more precisely, the interpretation of CTL (LTL) operators in a
Kripke model) in the Mu-calculus, a logic of extremal �xed points that has been shown to
be strictly more expressive than CTL [EL85].23 The Mu-calculus is attractive because it
can be used to express a variety of properties of transition systems and provides a general
framework for describing model checking algorithms. A model checking algorithm for
the Mu-calculus taken from [BCM+90, p. 7] is presented in Figure 6.1.

Veri�cation systems that perform temporal logic model checking are generally re-
ferred to as model checkers, re
ecting the fact that the basic function of these systems
is to decide whether a given �nite model (that is, a Kripke model) satis�es a formula
in a given logic. Models are expressed in suitable languages, and assertions about the
model are speci�ed in a di�erent language, typically a temporal logic. In the context of

23A language L0 is strictly more expressive than a language L if there are formulas that can be

expressed in L0 but not in L, and all formulas expressable in L are also expressable in L0.

114 Chapter 6

function Bdd_f(f: formula, I_p: rel-interp) : BDD;

case

f: an individual variable

return Bdd_Atom(f);

f: of the form f1 AND f2

return Bdd_And(Bdd_f(f1, I_p), Bdd_f(f2, I_p));

f: of the form NOT f1

return Bdd_Negate(Bdd_f(f1, I_p));

f: of the form EXISTS x [f1]

return Bdd_Exists(x, Bdd_f(f, I_p);

f: of the form Z(x1,...,xn)

return Bdd_R(Z, I_p)(d1 <- x1)...(dn <- xn);

end case;

function Bdd_R(R: rel-term, I_p: rel-interp) : BDD;

case

R: a relational variable

return I_p(R);

R: of the form LAMBDA x1,...,xn [f]

return Bdd_f(f, I_p)(x1 <- d1)...(xn <- dn);

R: of the form MU Z [R1]

return FixedPoint(Z, R1, I_p, FalseBdd);

end case;

function FixedPoint(Z: rel-var, R: rel-term,

I_p: rel-interp, T_i: BDD) : BDD;

let T_i+1 = Bdd_R, R_p(Z <- T_i);

if T_i+1 = T_i return T_i

else return FixedPoint(Z, R, I_p, T_i+1);

Figure 6.1: Burch et al.'s Mu-Calculus Model Checking Algorithm.

model checking, a suitable language is a reasonably expressive, high-level language, with
a precise mathematical semantics that de�nes its translation to Boolean formulas (OB-
DDs) or other forms suitable for symbolic model checking.24 There are several varieties
of model checkers, the most common being LTL model checkers that verify linear-time

24Although BDDs are still the most widely used symbolic representation for �nite state veri�cation,

other representations have been used instead of or in addition to BDDs. For example, LUSTRE is a

synchronous data
ow language stylistically similar to the SMV language. Verimag's POLKA system

(one of several systems to evolve from Cesar) is used to verify LUSTRE [HCRP91, HLR92, HFB93]

programs with integer variables. POLKA uses convex polyhedra to represent linear constraints. Re-

cently, a new data structure named Queue-content Decision Diagram (QDD) has been introduced for

representing (possibly in�nite) sets of queue-contents. QDDs have been used to verify properties of

communication protocols modeled by �nite-state machines that use unbounded �rst in, �rst out (FIFO)

queues to exchange messages [BG96]. QDDs have also been used in combination with BDDs to improve

the e�ciency of (BDD-based) symbolic model-checking techniques [GL96].

NASA-GB-001-97 115

properties of �nite Kripke models, and CTL model checkers that verify branching-time
properties of �nite Kripke models.

For example, the SMV system [McM93,CMCHG96], one of several CMU systems to
evolve from EMC, uses a synchronous data
ow language (also called SMV) with high-
level operations and nondeterministic choice. The transition behavior of an SMV pro-
gram, including its initial state(s), is determined by a collection of parallel assignments,
possibly involving a unit of delay. Asynchronous systems may be modeled by introducing
processes that have arbitrary delay. The SMV language supports modular hierarchical
descriptions, reuse of components, and parameterization [CMCHG96, p. 420]. An SMV
program consists of a Kripke model and a CTL speci�cation. The state of the model is
de�ned as the collection of the program's state variables, and its transition behavior is
determined by the collective e�ect of the parallel assignment statements. Variables are
restricted to �nite types, including Boolean, integer subrange, and enumerated types.
The SMV program in Figure 6.2 for a very simple protocol illustrates the basic idea.
The example is from McMillan [McM93].

MODULE main

VAR

request: boolean;

state: fready,busyg;
ASSIGN

init(state) := ready;

next(state) := case

state = ready & request : busy;

1 : fready,busyg;
esac;

SPEC

AG(request -> AF state = busy)

Figure 6.2: A Simple SMV Program [McM93, p. 63].

Values are chosen nondeterministically for variables that are not assigned a value or
whose assigned value is a set. For example, the variable request is not assigned in the
program, but chosen nondeterministically by the SMV system. Similarly, the value of
the variable state in the next state is chosen nondeterministically from the values in the
set fready, busyg.25 The speci�cation states that invariantly, if request is true, then
the value of state is busy. An SMV program typically consists of reusable modules.
SMV processes (not illustrated here) are module instances introduced by the keyword
process. Safety and liveness properties are expressed as CTL speci�cations. Fairness

25Like uninterpreted types, nondeterminism can be useful for describing systems abstractly (where

values of certain variables are not determined) or at levels that leave design choices open (to the

implementor).

116 Chapter 6

is speci�ed by means of fairness constraints that restrict the model checker to execution
paths along which a given CTL formula is true in�nitely often.

6.2.3.2 The Automata-Theoretic Approach

In the automata-theoretic approach, veri�cation means comparing the externally visible
behaviors of the �nite state machine representing a system model with the �nite state
machine representing its speci�cation. The method of comparison varies, depending on
the technique and the particular class of system for which it was developed.

6.2.3.2.1 Language Containment

In the language intersection approach �rst described by [VW86], veri�cation con-
sists of testing inclusion between two !-automata, where one automaton represents the
system that is being veri�ed and the other represents its speci�cation or task. Inclusion
denotes the strict subset relation between the languages of the two automata. For a
process P modeling a system to be veri�ed and a task T that P is intended to perform,
veri�cation consists of the test L(P) � L(T), where L(P) denotes the set of all \be-
haviors" of the modeled system and L(T) denotes the set of all \behaviors" consistent
with the performance of the modeled task or speci�cation. Typically, P is a system
of coordinating processes modeled by the product process P =
Pi, where each Pi is
an !-automaton.26 This semantic model accommodates speci�c reduction algorithms
that provide one response to the computational complexity problems associated with
more general model checking. The basic idea is to replace a computationally expen-
sive test L(P) � L(T) with a computationally cheaper test L(P 0) � L(T 0), such that
L(P 0) � L(T 0)) L(P) � L(T). P 0 and T 0 are derived from P and T , respectively, by
homomorphisms on the underlying Boolean algebra.27

The reduction of P is relative to T , that is, relative to a given task or speci�cation;
each task induces a di�erent reduction. Kurshan [Kur94] develops the theory underlying
such reductions.

26For purposes of this discussion, the distinction between �nite state machines or generators (of

behavior) and �nite state automata or acceptors (of behavior) has been glossed over. The former is

most convenient for modeling a system and the later for modeling its properties. Interested readers

should see [VW86] or [Tho90].
27A Boolean algebra is a set closed under the Boolean operations ^, _, :. A homomorphism is a

mapping (function) from one algebraic structure to another that is de�ned in terms of the algebraic

operations on the two structures. In the case of two Boolean algebras, B and B0, a map � is a

homomorphism just in case

�(x ^ y) = �(x) ^ �(y)

�(x _ y) = �(x) _ �(y)

�(:x) = :�(x)

NASA-GB-001-97 117

The veri�cation system typically associated with the language-inclusion approach
is COSPAN (Coordination Speci�cation Analyzer)28. COSPAN's native language is
S/R, a data-
ow language based on the selection/resolution model of coordinating pro-
cesses. S/R distinguishes state variables from combinational variables, the latter being
dependent variables whose values are functions or relations of the state variables. The
S/R language provides nondeterministic, conditional (\if-then-else") variable assign-
ments; bounded integer, enumeration, Boolean, array, record, and (array and record)
pointer types; and integer and bit-vector arithmetic. S/R also supports modular hi-
erarchal development, scoping, parallel and sequential execution, homomorphism dec-
laration, general !-automaton fairness (acceptance), and (!-regular) property speci�-
cation [HHK96, p. 425]. COSPAN provides both symbolic- (that is, BDD-based) and
explicit-state enumeration algorithms.

6.2.3.2.2 State Exploration

The terms \state exploration" and \reachability analysis" refer to �nite-state ver-
i�cation techniques that begin with an initial state and explicitly enumerate or con-
struct the reachable state space of a system model, typically using standard search
algorithms|such as depth-�rst or breadth-�rst search|that have been optimized to
alleviate state-space explosion. The state exploration approach contrasts with BDD-
based techniques, which use a symbolic (implicit) representation of the state space.
Spin [HP96] and Mur� [Dil96] exemplify this approach. Both veri�ers use an asyn-
chronous, interleaving model of execution in which atomic operations from a collection
of processes execute in an arbitrary order.

SPIN. Spin is automata-based and has full LTL model-checking capability. Each
process of the model is translated into a �nite automaton. Properties to be checked
are represented as B�uchi automata that correspond to a never claim, so-called because
these claims formalize behavior that should never occur. In other words, never-claims
correspond to violations of given correctness properties. A model is checked against its
required properties by calculating the intersection of the property automaton and the
process automata. A nonempty intersection indicates a possible correctness property
violation. Spin uses a veri�cation procedure based on reachability analysis of a model
by means of optimized graph traversal algorithms. This approach is also referred to as
state exploration.

The Spin model checker uses a nondeterministic, guarded command language called
Promela that was developed to specify and validate protocols by modeling process
interaction and coordination. Promela provides variables and general control-
ow
structures in the tradition of Dijkstra's guarded command language [Dij76] and Hoare's
language CSP [Hoa85]. Correctness criteria are formalized in Promela in terms of
assertions that capture both local assertions and global system invariants, labels that
can be used to de�ne frequently used correctness claims for both terminating and cyclic

28COSPAN is also used as the \veri�cation engine" in the commercial hardware veri�cation tool

FormalCheck, a trademark of the Bell Labs Design Automation center [HHK96].

118 Chapter 6

sequences (for example, deadlock, bad cycles, and liveness (acceptance and progress)
properties), and general temporal claims that de�ne temporal orderings of properties
of states expressed either as never-claims or as LTL formulas (that Spin translates into
Promela never-claims) [Hol91,HP96].

Spin uses depth-�rst search and a single-pass, on-the-
y veri�cation algorithm cou-
pled with partial order reduction techniques to reduce the state explosion problem.
On-the-
y algorithms attempt to minimize the amount of stored information, comput-
ing the intersection of the process and property automata only to the point necessary
to establish the nonemptiness of the resulting (composite) automaton. Partial order
reduction algorithms exploit the observation that the order in which concurrent or in-
dependently executed events are interleaved typically has no impact on the checked
property. It follows that instead of generating all execution sequences, it is su�cient to
generate a reduced state space composed of representatives for classes of sequences that
are not distinguishable with respect to execution order. The reduction must be shown
to preserve safety and liveness properties, but this is accomplished in the course of the
veri�cation.

Mur�. The name \Mur�" refers both to a veri�er developed to analyze �nite-state
concurrent systems such as protocols and memory models for multiprocessors, and to
its language. The Mur� description language is a guarded-command language based
on a Unity-like formalism [CM88] that includes user-de�ned datatypes, procedures, and
parameterized descriptions. A Mur� description consists of a collection of constant and
type declarations, variable declarations, transition rules (guarded commands), start
states, and invariants. Prede�ned data types include subranges, records, and arrays.
Mur� statement types include assignment, condition, case selection, repetition (for- and
while-loops), and procedure calls. Mur� rules consist of a condition and an action. A
condition is a Boolean expression on the global variables, and an action is an arbitrarily
complex statement. Each rule is executed atomically, that is, without interference from
other rules.

Correctness requirements are de�ned in Mur� in terms of invariants written as predi-
cates or conditions on the state variables. Invariants are equivalent to error statements,
which may also be used to detect and report an error, that is, the existence of a sequence
of states beginning in a start state and terminating in a state in which a given invari-
ant fails to hold. In addition to invariant violations, error statements, and assertion
violations, Mur� can check for deadlock and, in certain versions, liveness properties.

Mur� uses standard breadth- or depth-�rst search algorithms to systematically gen-
erate all reachable states, where a state is de�ned as the current values of the global
variables. State reduction techniques, including symmetry reduction, reversible rules,
replicated component abstraction, and probabilistic algorithms are exploited to alle-
viate state explosion [Dil96]. Symmetry reduction uses structural symmetries (in the
modeled system) to partition the state space into equivalence classes, thereby signif-
icantly reducing the number of states generated in applications such as certain types
of cache coherence protocols [ID93]. Reversible rules are rules that preserve informa-

NASA-GB-001-97 119

tion and can therefore be executed \backwards," yielding an optimization that avoids
storing transient states [ID96a]. Systems with identical replicated components can be
analyzed using explicit state enumeration in an abstract state space in which the exact
number of replicated components is treated qualitatively (for example, zero, one, or
more than one replicated components) rather than quantitatively (the exact number
of replicated components) [ID96b]. The combination of symmetry reduction, reversible
rule exploitation, and replicated component abstraction has been reported to yield mas-
sive reductions in the state explosion problem for cache coherence protocols and similar
applications [Dil96, p. 392]. Probabilistic veri�cation algorithms are being explored as
a way of reducing the number of bits in the hash table entry for each state [SD96].

6.2.3.2.3 Bisimulation Equivalence and Prebisimulation Preorders

Bisimulation equivalence provides a logical characterization of when two systems
are equivalent and is used to check statewise isomorphism between two �nite Kripke
models. Prebisimulation preorders similarly provide a logical characterization of when
one system minimally satis�es another. Informally, this means that bisimulation pro-
vides a notion of behavioral equivalence: two systems are equivalent if they exhibit the
same behavior, whereas prebisimulation provides a notion of behavioral relatedness: one
system exhibits at least certain behaviors exhibited or required by the other. In both
cases, a more abstract or higher-level system serves as a speci�cation of a lower-level
one. Veri�cation consists of showing that the lower-level model or \implementation"
satis�es its speci�cation by establishing the given relation between the two models.
For example, the correctness of a protocol can be established by showing that it is se-
mantically equivalent to its service speci�cation by modeling both the protocol and its
speci�cation as �nite state machines and using equivalence-checking veri�cation to es-
tablish the statewise, transition-preserving correspondence between the two �nite-state
models. Various formal relationships have been proposed. In general, these relations
are either equivalences (bisimulations) or preorders (prebisimulations) [CH89].

Milner's Calculus of Communicating Systems (CCS29) [Mil89] forms the basis for
several of the most visible equivalence-checking veri�ers for concurrent systems. Pro-
cesses are de�ned as CCS agents that are given an operational semantics de�ned in
terms of transition relations. CCS processes may de�ne an arbitrary number of subpro-
cesses, in which case the transition graph may have in�nitely many states. Although
some properties may be decidable in such cases, most interesting properties are unde-
cidable on agents that correspond to graphs with in�nite state spaces. Automated tools
for analyzing networks of �nite-state processes de�ned in CCS include the NCSU Con-
currency Workbench [CS96] and its predecessor, the (Edinburgh) Concurrency Work-
bench [CPS93], and the Concurrency Factory [CLSS96]. Both versions of the Concur-
rency Workbench support equivalence checking, preorder checking, and model checking
(for the modal mu-calculus). The NCSU Concurrency Workbench also provides diag-
nostic information if two systems fail to be related by either semantic equivalence of

29CCS and related approaches are also referred to as process algebras.

120 Chapter 6

preorder, and language
exibility that allows the user to change the system description
language [CS96]. The Concurrency Factory is also an integrated toolset, but focuses
on practical support for formal design analysis of real-time current systems. This is
achieved in part through a graphical design language (GCCS), a graphical editor, and
a graphical simulator [CLSS96]. In addition to a CCS-based semantics, GCCS has a
structural operational semantics [CLSS96, p. 400].

6.2.4 Utility of Finite-State Methods

The various approaches to �nite-state veri�cation outlined earlier are in theory very sim-
ilar and in many cases inter-de�nable, as noted in [VW86,CGK89,CBK90]. In practice,
the approaches have led to the development of tools with often overlapping capabilities,
but di�erent foci and strategies. For example, Spin has been developed for modeling dis-
tributed software using an asynchronous process model; Mur� and SMV have focused on
hardware veri�cation|Mur� on asynchronous concurrent systems using explicit state
exploration and SMV on both synchronous and asynchronous systems using symbolic
model checking; and COSPAN has been driven by a top-down design methodology im-
plemented through successive re�nement of (fundamentally) synchronous models and
has been used for both software and hardware design veri�cation. In some cases, the
capabilities are complementary, and there is work on integrating di�erent �nite-state
veri�cation strategies as done in COSPAN, which o�ers either symbolic- (BDD-based)
or explicit state enumeration algorithms, as well as on integrating di�erent approaches
in a single tool, as done in both versions of the Concurrency Workbench, which o�er
equivalence checking, preorder checking, and model checking.

Finite-state methods o�er powerful, automated procedures for checking temporal
properties of �nite-state and certain in�nite-state systems (Kripke models). They also
have the ability to generate counterexamples|typically in the form of a computation
path that establishes, for example, the failure of a property to hold in all states, and
witnesses|in the form of a computation path that establishes the existence of one
or more states in which a property is satis�ed. Finite-state methods are least ef-
fective on large, unbounded state spaces, high-level speci�cations, and data-oriented
applications|areas in which deductive methods are more appropriate. For this rea-
son, there has been increasing interest in integrating �nite-state methods and deductive
theorem proving. This topic is revisited in Section 6.4.

6.3 Direct Execution, Simulation, and Animation

Direct execution, simulation, and animation are techniques used to observe the behav-
ior of a model of a system. Formal analysis, on the other hand, is used to analyze
modeled behavior and properties. In many cases, there are fundamental di�erences be-
tween these observational and analytical methods, including the models they use and
their expected performance. Typically, models used for veri�cation cannot expose their

NASA-GB-001-97 121

own inaccuracy and, conversely, models used for conventional simulation cannot con-
�rm their own correctness [Lan96, p. 309]. Models used for simulation of large systems
must be able to handle realistic test suites fast, since these suites may literally run for
weeks. This kind of e�ciency is not a reasonable expectation in executable speci�ca-
tion languages. Formal veri�cation techniques generally treat the notion of time as an
abstraction and largely avoid probabilities, whereas more concrete representations of
time and probabilistic analyses play an important role in observational methods. Fi-
nally, direct execution, simulation, and animation show behavior over a �nite number
of cases, whereas formal analysis can be used to explore all possibilities, the former
o�ering statistical certainty and the latter, mathematical certainty. Although some of
these di�erences are attenuated when \simulation" is considered in the context of for-
mal speci�cation languages (for example, the models used for execution and simulation
typically coincide), others persist (for example, veri�cation still proceeds by extrapola-
tion from a �nite number of cases, rather than by mathematical argumentation over all
possible cases). The remainder of this section summarizes the notions of executability,
simulation, and animation in the context of formal methods.30

6.3.1 Observational Techniques

Some formal speci�cation languages are directly executable, or contain a directly ex-
ecutable subset, meaning that the speci�cation itself can be executed or run and its
behavior observed directly. For example, a logic based on recursive functions, such as
that used in Nqthm [BM88] and ACL2 [KM94], supports direct execution and \simu-
lation" on concrete test cases because it is always possible to compute the value of a
variable-free term or formula in the executable subset of these logics. The following
quote from [KM94, p. 8] describes the role of executability in the formalization of a
model of a digital circuit (the FM9001) in Nqthm.

[The Nqthm model] can be thought of as a logic simulator (without,
however, the graphic and debugging facilities of commercial simulators).
. . . Running [the model] on a concrete netlist31 and data involves simulating
in the proper sequence the input/output behavior of every logical gate in
the design . . .

The speci�cation language for the Vienna Development Method (VDM), VDM-SL, also
has a large executable subset, as well as tool support for dynamically checking type
invariants and pre and post conditions, and for running test suites against a VDM-
SL speci�cation [VDM]. Similarly, the concrete representation of algorithms and data
structures required by most �nite-state enumeration and model-checking methods (see

30Planning and administrative trade-o�s involving, for example, cost, available resources, criticality

of the system, and desired levels of formality, are discussed in the �rst volume of the guidebook [NASA-

95a].
31The \netlist" is an Nqthm constant that describes a tree of hardware modules and their intercon-

nections via named input/output lines.

122 Chapter 6

Section 6.2) make them comparable to direct execution techniques. Certain �nite state
veri�cation tools also provide \simulation," by exploring a single path through the state
space rather than all possible paths [Hol91,DDHY92, ID93].

The dynamic behavior of speci�cations written in nonexecutable languages may be
studied indirectly, by reinterpreting the speci�cation in a (high-level) programming lan-
guage. Execution of the resulting program is referred to as an emulation or animation of
the speci�cation. Some formal speci�cation languages o�er both a directly executable
subset and the option of user- or system-de�ned program text to drive animation of
nonexecutable parts of the speci�cation. Speci�cations written in a nonexecutable lan-
guage using a constructive functional style may be \executed" by exploiting a rewrite
facility (assuming one is available) to rewrite function de�nitions, starting from a par-
ticular set of arguments. This amounts to writing an emulator for the system being
modeled and may not be either possible or desirable. For example, making an entire
speci�cation executable typically precludes using axioms to dispense with those parts
of a system or its environment that are not of interest or do not warrant veri�cation.

Direct execution, simulation, and animation are not alternatives to more rigorous
formal analysis, but rather e�ective complements. For example, during the requirements
and(or) high-level design phase, executability can be used to probe the behavior of a sys-
tem on selected test cases, and deductive theorem proving can be used to exhaustively
establish its general high-level properties. In this type of strategy, executability pro-
vides an e�cient way to avoid premature proof e�orts and, conversely, to focus the more
rigorous (and thereby more expensive) proof techniques on the most appropriate behav-
iors and properties. This symbiotic use of di�erent techniques is nicely illustrated in the
development of a formal speci�cation of the Synergy File System using ACL2 [BC95a].
In this application, formalization of an ACL2 executable model, execution of the model,
and proof of an invariant about transitions in the model each revealed signi�cant errors.

6.3.2 Utility of Observational Techniques

The main advantages of executability are that it allows the speci�cation and underly-
ing model to be \debugged," and it allows the speci�cation to serve as a \test oracle"
relatively early in the life cycle. Animation and emulation confer similar bene�ts. A
further advantage of executability is that it allows behavior to be observed and explored
in the same formally rigorous context as that in which the speci�cation is developed.
Other documented roles for executability include post-implementation testing, as illus-
trated, for example, in post-fabrication execution of the FM9001 speci�cation to test
the fabricated devices for conformance to the (veri�ed) design [KM94, p. 9]. Although
this example represents a somewhat novel use of executability, it is potentially an im-
portant technique by means of which formal methods can make a unique contribution
to conventional testing regimes. The technology transfer potential of executability,
animation, and emulation is also worth noting. Because simulation, animation, and em-
ulation are techniques familiar to analysts and engineers, they o�er an e�ective vehicle
for integrating formal methods into ongoing system development activities. The VDM-

NASA-GB-001-97 123

SL study carried out at British Aerospace provides an interesting example of the role
of executability in the integration of formal speci�cation in a traditional development
process [LFB96].

6.4 Integrating Automated Analysis Methods

No single technique is e�ective across a wide range of applications or even across a sin-
gle application with disparate components or algorithms. Industrial-strength examples
typically require a variety of approaches, currently used as standalone systems, as illus-
trated, for example, in [MPJ94]. Rushby [Rus96] argues that e�ective deductive support
for formal methods requires not standalone, but integrated techniques e�ective across
a broad range of applications. Shankar [Sha96] makes a similar argument, noting that
the \sheer scale" of mathematics necessary for formal methods argues for a uni�cation
of veri�cation techniques.

The three analysis techniques surveyed in this chapter|automated deductive meth-
ods, �nite-state methods, and simulation methods|have complementary strengths and
there is increasing interest in the synergistic integration of these techniques within a
uniform framework. Synergistic integration simply means that the resulting system
should be more than the sum of its parts. Logical frameworks, such as Isabelle [Pau88],
support the de�nition and construction of deductive tools for specialized logics, but do
not provide systematic support for coherent integration of di�erent capabilities [Sha96].
The Stanford TEmporal Prover (STEP) [Man94], which integrates model checking with
algorithmic deductive methods (decision procedures) and interactive deductive meth-
ods (theorem proving) to support veri�cation of reactive systems, is an example of one
strategy in the search for e�ective integration. The STEP system is interesting because
it also combines powerful algorithmic and heuristic techniques to automatically gen-
erate invariants. A di�erent approach has been used to integrate model checking and
automated proof checking in PVS [RSS95], where a BDD-based model checker for the
propositional mu-calculus is integrated as an additional decision procedure within the
proof checker.

The notion of integrated veri�cation techniques introduced here provides a glimpse
of the direction veri�cation technology is heading. One implication of this discussion
is the relative maturity of existing formal methods techniques, which o�er e�ective
speci�cation and analysis options for aerospace applications.

6.5 Proof of Selected SAFER Property

The property that no more than four thrusters may be �red simultaneously follows
directly from the detailed functional requirements of the SAFER system. Thruster
selection is a function of the integrated hand grip and AAH-generated commands.
The thruster select logic speci�ed in Tables C.2 and C.3 is used to choose appropri-
ate thrusters based on a given integrated command. An initial survey of these tables

124 Chapter 6

might suggest that as many as four thrusters can be selected from each table, resulting
in as many as eight thrusters chosen in all. However, several additional constraints
render certain command combinations invalid. Furthermore, the table entries them-
selves are interrelated in ways that limit the thruster count for multiple commands.
The four-thruster maximum follows directly from the combination of these two types of
constraint.

The four-thruster max property is fundamental and is explicitly captured as Re-
quirement 41, one of the avionics software requirements (see Sections 3.3 and C.2):

41. The avionics software shall provide accelerations with a maximum of four simul-
taneous thruster �ring commands.

The four-thruster max property can be expressed as a PVS theorem as shown here.

max_thrusters: THEOREM

FORALL (a_in: avionics_inputs), (a_st: avionics_state):

length(prop_actuators(output(SAFER_control(a_in, a_st)))) <= 4

The theorem asserts that for any input and state values, the outputs produced by
the SAFER controller, which include the list of thrusters to �re in the current frame,
obey the maximum thruster requirement. This claim applies to any output that can be
generated by the model.

6.5.1 The PVS Theory SAFER properties

Proof of the max thrusters theorem requires several supporting lemmas. These lemmas
and the theorem itself are packaged as the PVS theory SAFER properties, which is
reproduced here.

NASA-GB-001-97 125

SAFER_properties: THEORY

BEGIN

IMPORTING avionics_model

A,B,C: VAR axis_command

tr: VAR tran_command

HCM,cmd: VAR six_dof_command

AAH: VAR rot_command

state: VAR AAH_state

thr,U,V: VAR thruster_list

act: VAR actuator_commands

BF,LRUD: VAR thruster_list_pair

%% Only one translation command can be accepted for thruster selection.

only_one_tran(tr): bool =

(tr(X) /= ZERO IMPLIES tr(Y) = ZERO AND tr(Z) = ZERO)

AND (tr(Y) /= ZERO IMPLIES tr(Z) = ZERO)

only_one_tran_pri: LEMMA

only_one_tran(prioritized_tran_cmd(tr))

only_one_tran_int: LEMMA

only_one_tran(tran(integrated_commands(HCM, AAH, state)))

%% All categories of selected thrusters (BF vs. LRUD and mandatory

%% vs. optional) are bounded in size by two, which follows directly

%% from inspection of the tables.

max_thrusters_BF: LEMMA

length(proj_1(BF_thrusters(A, B, C))) <= 2 AND

length(proj_2(BF_thrusters(A, B, C))) <= 2

max_thrusters_LRUD: LEMMA

length(proj_1(LRUD_thrusters(A, B, C))) <= 2 AND

length(proj_2(LRUD_thrusters(A, B, C))) <= 2

126 Chapter 6

%% Absence of translation commands implies no optional thrusters

%% will be selected.

no_opt_thr_BF: LEMMA

tr(X) = ZERO IMPLIES length(proj_2(BF_thrusters(tr(X), B, C))) = 0

no_opt_thr_LRUD: LEMMA

tr(Y) = ZERO AND tr(Z) = ZERO IMPLIES

length(proj_2(LRUD_thrusters(tr(Y), tr(Z), C))) = 0

%% Top level theorems establishing bounds on number of selected thrusters:

max_thrusters_sel: LEMMA

only_one_tran(tran(cmd)) IMPLIES

length(selected_thrusters(cmd)) <= 4

max_thrusters: THEOREM

FORALL (a_in: avionics_inputs), (a_st: avionics_state):

length(prop_actuators(output(SAFER_control(a_in, a_st)))) <= 4

END SAFER_properties

The SAFER properties theory depends on other theories in the SAFER speci�ca-
tion, as shown in the graph of the dependency hierarchy in Figure 6.3. Only the depen-
dency on the theory avionics model is explicitly represented (in the IMPORTING clause

in SAFER properties). The remaining dependency chains are established through sim-
ilar clauses in the other theories.

The lemmas in SAFER properties di�er in import. Some are used to decompose
the proof. Others express general properties of the problem domain that are likely
to be useful in the proof of additional SAFER properties as well as in the proof of
max thrusters. Annotations (indicated by the PVS comment character %) indicate
whether the lemma represents an intermediate proof step or a general property.

The mechanically assisted proof of the SAFER properties theory consists of a
proof of the top-level theorem, max thrusters, whose proof follows from the lemmas
max thrusters sel and only one tran int. Each of these lemmas is, in turn, proved
in terms of other lemmas from this theory. The PVS theorem prover employs a sequent
calculus similar to that sketched in Section 6.1.3.1.2, but mechanized at a considerably
higher level than that re
ected in the proof in Section 6.1.3.3. Section C.4.2.2 shows a
transcript from the proof of theorem max thrusters. The proof contains only �ve steps
in the PVS theorem prover. Proofs of the remaining lemmas are similarly straightfor-
ward and require only a few steps. The single exception is max thrusters sel, whose
proof involves a case analysis.

NASA-GB-001-97 127

6.5.2 Informal Argument for Lemma max thrusters sel

Consider, �rst, an informal argument for the max thrusters sel lemma. At most two
mandatory and two optional thrusters can be selected from each of the two thruster
tables. The argument proceeds by cases de�ned in terms of possible commands.

The �rst case concerns a translation command for the X axis.

� Case 1: No X command present. Inspection of Table C.2 shows that there will
be no optional thrusters selected in this case. There are two subcases, depending
on the presence of a pitch or yaw command.

{ Case 1.1: No pitch or yaw commands. Inspection of Table C.2 shows
that no thrusters at all are selected in this case. At most four can come from
Table C.3. Hence, the max thruster property holds.

{ Case 1.2: Pitch or yaw command present. Inspection of Table C.3
indicates that no optional thrusters are chosen from this table. Hence, only
mandatory thrusters from each table are chosen, and, again, the number
selected cannot exceed 4.

� Case 2: X command present. Because only one translation command is
allowed, it follows that no Y or Z command can appear. This, in turn, implies
that no optional thrusters are chosen from Table C.3. The subcases take into
account the possibility of a roll command.

{ Case 2.1: No roll command. Without a roll command, no thrusters are
selected from Table C.3. Hence, the max thruster property holds.

{ Case 2.2: Roll command present. A roll command implies that Ta-
ble C.2 yields no optional thrusters. This leaves only mandatory thrusters
from each table, and the bound of four thrusters is satis�ed.

The case analysis sketched in this informal proof can be directly formalized in PVS.
The resulting proof is quite lengthy, as shown in the proof tree in Figure 6.4. As noted
earlier, the level of automation represented in this �gure is higher than that illustrated
in Section 6.1.3.3.

Although it is certainly possible to use mechanized proof tools to verify informal
proofs in this way, it is often far more productive to exploit the strengths of a particular
tool to make the proof more automatic, more comprehensible, or more optimal with
respect to other desired metrics. This kind of optimization follows quite naturally as
one of the later steps in the inherently iterative process of developing and re�ning
a proof. Figure 6.5 shows a considerably simpler and more automated proof for the
max thrusters sel property. This second proof exploits the high-level PVS GRIND

command that packages many lower-level commands, thereby automating most of the
proof of max thrusters sel.

128 Chapter 6

SAFER_properties

avionics_model

avionics_types

hand_controller_module propulsion_module

thruster_selection

automatic_attitude_hold

inertial_reference_unit

data_recorder

power_supply

self_test

HCM_display

Figure 6.3: Dependency Hierarchy for SAFER properties.

NASA-GB-001-97 129

(skosimp*)

(expand "selected_thrusters")

(rewrite "length_append")

(rewrite "length_append")

(rewrite "length_append")

(expand "length" 1 (3 6))

(use "max_thrusters_BF")

(use "max_thrusters_LRUD")

(flatten)

(use "no_opt_thr_BF")

(use "no_opt_thr_LRUD")

(expand "only_one_tran")

(case "tran(cmd!1)(X) = ZERO")

(replace -1)

(simplify)

(replace -3)

(simplify)

(lift-if)

(split 1)

(flatten)

(replace* -1 -2)

(expand "BF_thrusters")

(expand "length" 1 3)

(assert)

(assert)

(record 1)

(simplify -7)

(flatten -7)

(record (-7 -8))

(simplify -1)

(replace -1)

(simplify 2)

(lift-if)

(split 2)

(flatten)

(replace* -1 -8 -9)

(expand "LRUD_thrusters")

(expand "length" 1 3)

(assert)

(assert)

Figure 6.4: Proof Tree for SAFER properties max thrusters sel.

130 Chapter 6

(skosimp*)

(auto-rewrite ...)

(expand ...)

(use "max_thrusters_BF")

(use "max_thrusters_LRUD")

(use "no_opt_thr_BF")

(use "no_opt_thr_LRUD")

(grind ...)

(expand "LRUD_thrusters")

(assert)

(expand "BF_thrusters")

(assert)

(expand "BF_thrusters")

(assert)

Figure 6.5: Revised Proof Tree for SAFER properties max thrusters sel.

Chapter 7

Conclusion

This guidebook has presented a discussion of the technical issues involved in the use of
formal methods. The focus has been on using formal methods to analyze requirements
and high-level designs, that is, on a spectrum of activities that apply mathematical
techniques to formalize, explore, debug, validate, and verify software and hardware
systems. The development of the SAFER speci�cation has exempli�ed the process of
applying formal methods to aerospace applications.

The guidebook characterizes formal methods as an iterative process whose broad
outlines are determined by contextual factors. E�ective use of this process involves
judiciously pairing formal methods with an application and its careful integration with
existing quality control and assurance activities.

7.1 Factors In
uencing the Use of Formal Methods

Two types of factors in
uence the use of formal methods: administrative factors and
technical factors. Administrative factors|including project scale and sta�ng, inte-
gration of formal methods with traditional processes, and general project guidelines:
training, speci�cation and documentation standards and conventions, and so on|are
discussed in Volume I of this Guidebook [NASA-95a]. Technical factors|including
the type, size, and structure of the application; level of formalization; scope of formal
methods use; characteristics of available documentation, and choice of formal methods
tool|have been the subject of this second volume of the guidebook. These technical
factors are summarized here.

� Type, Size, and Structure of the Application Formal methods are best suited
to the analysis of complex problems, taken singly or in combination, and less suited
for numerical algorithms or highly computational applications. Applications of
moderate size with a coherent structure that can be decomposed into subsystems
or components are typically most appropriate.

131

132 Chapter 7

� Level of Formalization Formal methods can be productively applied at vari-
ous levels of formality or rigor, ranging from the occasional use of mathematical
notation to exclusive use of semantically well-de�ned speci�cation languages with
mechanized proof support.

� Scope of Formal Methods Use Formal methods can be e�ectively applied in a
variety of ways depending on which stages of the developmental life cycle, which
system components, and what system functionality are formalized.

� Documentation Formal methods bene�t from the availability of adequate docu-
mentation. The most important characteristics are the level at which the require-
ments (high-level design) are stated, the degree to which they are explicitly and
unambiguously enumerated, the extent to which they can be traced to speci�c
system components, and the availability of additional information or expertise to
motivate and clarify their de�nition.

� Tool(s) Formal methods typically involve some level of mechanical support. The
choice of formal methods tool, if any, is determined by administrative factors and
the preceding technical factors (excepting documentation). Information on formal
methods tools is available from several databases, including those maintained by
Jonathon Bowen, Larry Paulson, and Carolyn Talcott, respectively [Bowen,Pauls,
Talco].

7.2 The Process of Formal Methods

Contextual factors determine the broad outlines of formal methods use for a given appli-
cation. The substance of the formal methods process has been characterized in previous
chapters of this volume as a discipline composed of the following activities: character-
izing, modeling, specifying, analyzing, documenting, and maintaining/generalizing.

� Characterizing Synthesizing a thorough understanding of the application and
the application domain, resulting in a working characterization of the application
and relevant parts of its environment.

� Modeling Selecting a mathematical representation expressive enough to formalize
the application domain, while providing su�cient analytical power to explore,
calculate, and predict the behavior of the system.

� Specifying Developing a speci�cation strategy, formalizing the application in
terms of the underlying model and articulated strategy, and checking the syntactic
and semantic correctness of the speci�cation.

� Analyzing Predicting and calculating system behavior, challenging underlying
assumptions, validating key properties and invariants, establishing the consistency
of axioms, and establishing the correctness of hierarchical layers.

NASA-GB-001-97 133

� Documenting Recording underlying assumptions, motivating critical decisions,
documenting rationale and crucial insights, providing additional explanatory ma-
terial, tracing speci�cation to requirements (high-level design), tracking level of
e�ort, and collecting cost/bene�t data.

� Maintaining/Generalizing Revisiting and, as necessary, modifying the speci�-
cation and analysis to predict the consequences of proposed changes to the mod-
eled system, to re
ect mandated changes to the modeled system, to accommodate
reuse of the formal speci�cation and analysis, or to distill general principles from
the formalization.

Although this linearization of the process is informative, it is important to keep two
additional facts in mind. First, applying formal methods is an iterative process. A
speci�cation, like a conventional program, must be methodically developed, explored,
modi�ed, and re�ned through many iterations until the result is free of syntactic and
semantic errors and captures desired characteristics and behaviors in a concise and easily
communicated form. Second, the list is not prescriptive. Each project necessarily selects
the most appropriate subset of the activities listed above, namely those most consistent
with its mandate and the resources at its disposal.

7.3 Pairing Formal Methods, Strategy, and Task

Formal methods o�er a diverse set of techniques appropriate for a wide variety of ap-
plications. Moreover, there are many ways to use these techniques to model systems
and to calculate and explore their properties. The implications of this rich repertoire
of techniques and strategies is that the e�ective use of formal methods involves judi-
cious pairing of method, strategy, and task. For example, control-intensive algorithms
for small �nite systems, such as mode sequencing algorithms, are often most e�ectively
analyzed using state exploration, while general properties of complex algorithms, such
as Byzantine fault-tolerant clock synchronization, typically require e�cient deductive
support for arithmetic in the form of arithmetic decision procedures. When an optimal
pairing of methods, strategy, and task is not readily apparent, a rapid prototype of
an aggressively downscaled or abstracted model that preserves essential properties of
interest can help to focus the selection. Precedence, that is, techniques or strategies
successfully applied to similar tasks, can also serve as a guide in these cases.

A complex application is typically decomposable into subtasks. In such cases, it may
be productive to apply a combination of methods, or to apply a \lightweight" method
such as model checking, animation, or direct execution to speci�c or reduced cases of
all or part of a speci�cation before attempting a more rigorous and costly analysis. For
example, [HS96] reports the analysis of a communications protocol using a combination
of �nite state exploration, theorem proving, and model checking. The protocol was �rst
manually reduced to �nite state to allow certain safety properties to be checked using
�nite state exploration. These properties were then veri�ed for the full protocol using

134 Chapter 7

deductive theorem proving. The invariant used for the proof had to be strengthened
through additional conjuncts discovered incrementally during the proof process. Each
proposed new conjunct was checked in the reduced model, using state exploration before
it was used in the evolving proof. This iterative process eventually yielded an invariant
composed of 57 conjuncts. Exploiting the knowledge gained in this exercise, a �nite-state
abstraction of the original protocol was developed and mechanically veri�ed. Finally,
properties of the abstraction were veri�ed, using a model checker for the propositional
mu-calculus (see Chapter 6, Section 6.2.1.5). Although this particular example re
ects
a demanding exercise carried out by expert practitioners, it is a nice illustration of the
productive interaction of combinations of techniques and strategies that are available
to expert and nonexpert alike.

7.4 Formal Methods and Existing Quality Control and

Assurance Activities

Formal methods complement, but do not replace, testing and other traditional quality
control and assurance activities.1 This symbiotic relationship between formal methods
and traditional quality control and assurance methods derives from the fact that formal
methods are most e�ectively used early in the life cycle, on suitably abstract repre-
sentations of traditionally hard problems,2 in order to provide complete exploration
of a model of possible behaviors. Conversely, traditional quality control and assurance
methods have proven highly e�ective late in the life cycle on concrete (implemented) so-
lutions to hard problems, in order to establish the correctness of detailed and extensive,
but necessarily �nite behavioral scenarios.

There are many ways to exploit the complementarity between formal methods and
existing quality control and assurance activities. Some of these directly target formal
methods' products. For example, [CRS96,SH94] describe a fully automatable structural
(\black box") speci�cation-based testing technique that complements implementation-
based testing. This technique derives descriptions of test conditions from a formal
speci�cation written in a predicate logic-based language. The test conditions guide
selection of test cases and measure the comprehensiveness of existing test suites. Recent
conference proceedings, for example [COMP95, ISSTA96], attest to current interest in
developing automated methods that use formal speci�cations to generate test artifacts
for concrete implementations.

Other approaches re
ect a more indirect use of formal methods. For example, formal,
or even quasi-formal models developed during the application of formal methods can be
used to facilitate traditional safety analyses. Leveson et al. report [MLR+96, p. 14] that

1Following Rushby [Rus93b, p. 144], quality control denotes \methods for eliminating faults" and

quality assurance denotes \methods for demonstrating that no faults remain."
2Including, but not limited to, fault tolerance, concurrency, and nondeterminism, where capabilities

distributed across components must be synchronized and coordinated, and where subtle interactions,

for example, due to timing and fault status, must be anticipated.

NASA-GB-001-97 135

\. . . the state abstraction and organization [of their state-transition models] facilitated
. . . fault tree analysis." A further input to traditional safety analyses might involve
the formal speci�cation and analysis of key safety properties. For example, it can be
demonstrated that a particular formal model satis�es (or fails to satisfy) given safety
properties, that proposed system modi�cations captured in a model fail to preserve
desired safety properties, or that an executable speci�cation fails to satisfy a given test
suite. The results of these and other formal analyses can, in turn, be used to expose
areas of potential concern and, thereby, concentrate conventional testing activities. If
the results of the testing are then iterated back into the formal analysis, the increasingly
focused iteration can be used to re�ne requirements or high-level designs. The examples
cited here are suggestive, only. In general, the tighter the integration of formal and
conventional methods, the more productive the interplay between formal techniques
and traditional quality control and assurance activities.

7.5 Formal Methods: Veri�cation Versus Validation and

Exploration

The real value of formal methods lies not in their ability to eliminate doubt, but in

their capacity to focus and circumscribe it.3

The use of formal methods is often seen as a form of absolute guarantee|a proof
of total correctness. However, as Rushby [Rus93b, pp. 74-75] notes, equating formal
veri�cation with total correctness is doubly misleading in that it overestimates the
guarantee conferred by formal veri�cation while it underestimates the value of the formal
veri�cation process, per se.

The guarantee conferred by formal veri�cation assures the mutual consistency of
the speci�cations at either end of a chain of veri�cation, but necessarily fails to address
the adequacy of the underlying model, the extent to which the highest-level speci�ca-
tion captures the requirements, or the �delity with which the lowest-level speci�cation
captures the behavior of the actual system. The potentially contentious issue of the ad-
equacy of the model is typically resolved through extensive use, challenge, and review,
although there have been a few interesting attempts to characterize and automate the
selection of \adequate" models of physical systems [Nay95]. The �delity of the upper-
and lowermost speci�cations in a chain of veri�cation is established through validation.

The value of the process of formal veri�cation lies not only, or even primarily, in the
end product|that is, in a proof of correctness, but rather in the bene�ts accumulated
along the way. These bene�ts include many of those discussed in previous chapters of
this guidebook.

� A detailed enumeration of all the assumptions, axioms, and de�nitions that pro-
vide the underlying basis for the veri�cation and characterize the requirements and

3Paraphrase of a comment from John Rushby.

136 Chapter 7

properties whose satisfaction or utility in the physical world must be empirically
validated.

� The validation of these assumptions and properties (for example, through proof
checking or model checking).

� The (early) detection of inconsistent requirements or of design faults. Most veri�-
cations fail, at least initially, and the information gained from these failed attempts
reveals unstated assumptions, missing cases, and other errors of interpretation or
omission. Although some of these errors would probably be caught by conven-
tional techniques, others are quite subtle and less likely to be exposed by informal
techniques or sampled behaviors.

� The ability to explore readily and reliably the consequences of additional or mod-
i�ed assumptions, requirements, and designs, reinforcing and informing the nec-
essarily iterative process of developing large and complex systems.

� The ability to identify and develop reusable formal methods techniques, strategies,
and products, contributing to a cost-e�ective approach to the development of large
and complex systems.

� The improved understanding and identi�cation of better solutions derived from
the intense scrutiny and discipline involved in the process of formalization and
formal analysis.

In summary, formal methods do not focus exclusively or even primarily on \proving
correctness"|the veri�cation activities associated with software implementations and
hardware layouts|but rather on exploring, debugging, and validating artifacts, such as
requirements and high-level designs, leading to a deeper understanding of their proper-
ties and assumptions, an earlier capability for calculating and predicting their behavior,
and a fuller appreciation of the consequences of modifying their structure, properties, or
environment. This guidebook has attempted to provide formal methods practitioners
with the information and insight essential to the productive use of formal methods.

References

[AC96] M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Com-
puter Science. Springer-Verlag, New York, NY, 1996.

[ACHH93] R. Alur, C. Courcoubetis, T. A. Henzinger, and Pei-Hsin Ho. Hybrid
Automata: An Algorithmic Approach to the Speci�cation and Veri�ca-
tion of Hybrid Systems. In Grossman et al. [GNRR93], pages 209|229.

[Ack62] R. L. Acko�, editor. Scienti�c Method: Optimizing Applied Research

Decisions. John Wiley and Sons, 1962.

[ACM94] Ninth Annual Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA '94), Portland, Oregon, Octo-
ber 1994. ACM/SIGPLAN(in SIGPLAN Notices Vol 29, No. 10, Octo-
ber 1994).

[AD91] R. Alur and D. Dill. The Theory of Timed Automata. In de Bakker
et al. [dBHdRR91], pages 45|71.

[AH91] R. Alur and T. A. Henzinger. Logics and Models of Real Time: A
Survey. In de Bakker et al. [dBHdRR91], pages 74|106.

[AH95] R. Alur and Pei-Hsin Ho. HYTECH: The Cornell HYbrid TECHnology
Tool. In Antsaklis et al. [AKNS95], pages 265|293.

[AH96] Rajeev Alur and Thomas A. Henzinger, editors. Computer-Aided Veri-

�cation, CAV '96, volume 1102 of Lecture Notes in Computer Science,
New Brunswick, New Jersey, July/August 1996. Springer-Verlag.

[AH97] M. Archer and C. Heitmeyer. Verifying Hybrid Systems Modeled as
Timed Automata: A Case Study. In Proceedings of the International

Workshop on Hybrid and Real-Time Systems (HART'97), Grenoble,
France, March 1997.

[AHS96] Rajeev Alur, Thomas Henzinger, and Eduardo Sontag, editors. Hybrid
Systems III, Veri�cation and Control, volume 1066 of Lecture Notes in
Computer Science, New York, NY, 1996. Springer-Verlag.

137

138 References

[AINP88] Peter B. Andrews, Sunil Issar, Daniel Nesmith, and Frank Pfenning.
The TPS Theorem Proving System. In Lusk and Overbeek [LO88],
pages 760{761.

[AKNS95] Panos Antsaklis, Wolf Kohn, Anil Nerode, and Shankar Sastry, editors.
Hybrid Systems II, volume 999 of Lecture Notes in Computer Science,
New York, NY, 1995. Springer-Verlag.

[AL95] Y. Ampo and R. Lutz. Evaluation of Software Safety Analysis Using
Formal Methods. In Foundation of Software Engineering Workshop,
Hamana-ko, Japan, December 1995.

[AMCP84] P. B. Andrews, D. A. Miller, E. L. Cohen, and F. Pfenning. Automating
Higher-Order Logic. In Automated Theorem Proving: After 25 Years,
pages 169{192. American Mathematical Society, 1984.

[And86] Peter B. Andrews. An Introduction to Logic and Type Theory: To Truth

through Proof. Academic Press, New York, NY, 1986.

[BB89] Karl Hans Bl�asius and Hans-J�urgen B�urckert. Deduction Systems in

Arti�cial Intelligence. Ellis Horwood Series in Arti�cial Intelligence.
Ellis Horwood Limited, Chichester, West Sussex, UK, 1989. Distributed
in the U.S. by Halsted Press: a division of John Wiley and Sons.

[BC94] R. Bourdeau and B. Cheng. A Formal Semantics of Object Models.
Technical Report MSU-CPS-94-6, Department of Computer Science,
Michigan State University, East Lansing, Michigan, January 1994.

[BC95a] William R. Bevier and Richard M. Cohen. An Executable Model of
the Synergy File System. Technical report, Computational Logic, Inc.,
May 1995.

[BC95b] R. Bourdeau and B. Cheng. A Formal Semantics for Object Model
Diagrams. IEEE Transactions on Software Engineering, 21(10):799{
821, October 1995.

[BCC+95] Ricky W. Butler, James L. Caldwell, Victor A. Carreno, C. Michael
Holloway, Paul S. Miner, and Ben L. Di Vito. NASA Langley's Re-
search and Technology Transfer Program in Formal Methods. In Tenth

Annual Conference on Computer Assurance (COMPASS 95), Gaithers-
burg, MD, June 1995.

[BCM+90] J. R. Burch, E. M. Clarke, K. L McMillan, D. L. Dill, and L. J.
Hwang. Symbolic Model Checking: 1020 States and Beyond. In 5th

Annual IEEE Symposium on Logic in Computer Science, pages 428{
439, Philadelphia, PA, June 1990. IEEE Computer Society.

NASA-GB-001-97 139

[BDH94] Ricky W. Butler, Ben L. Di Vito, and C. Michael Holloway. Formal
Design and Veri�cation of a Reliable Computing Platform for Real-
Time Control: Phase 3 Results. NASA Technical Memorandum 109140,
NASA Langley Research Center, Hampton, VA, August 1994.

[BE87] Jon Barwise and John Etchemendy. The Liar: An Essay in Truth and

Circularity. Oxford University Press, New York, NY, 1987.

[BE93] W. Bibel and E. Eder. Methods and Calculi for Deduction. In Handbook
of Logic in Arti�cial Intelligence and Logic Programming, volume 1:
Logical Foundations, pages 68{182. Oxford, 1993.

[Bee86] Michael J. Beeson. Proving Programs and Programming Proofs. In In-

ternational Congress on Logic, Methodology and Philosophy of Science

VII, pages 51{82, Amsterdam, 1986. North-Holland. Proceedings of a
meeting held at Salzburg, Austria, in July 1983.

[Bel86] E. T. Bell.Men of Mathematics. A Touchstone Book. Simon & Schuster,
Inc., New York, NY, 1986. First published in 1937.

[Bev89] William R. Bevier. Kit and the Short Stack. Journal of Automated

Reasoning, 5(4):519{530, December 1989.

[BG96] Bernard Boigelot and Patrice Godefroid. Symbolic Veri�cation of Com-
munication Protocols with In�nite State Spaces Using QDDs. In Alur
and Henzinger [AH96], pages 1{12.

[BH91] J.M. Boyle and T.J. Harmer. Functional Speci�cations for Mathemat-
ical Computations. In B. M�oller, editor, Constructing Programs from

Speci�cations, pages 205{224. North-Holland, 1991. Proceedings of the
IFIP TC2/WG 2.1 Working Conference on Constructing Programs from
Speci�cations, Paci�c Grove, CA, USA, 13-16 May 1991.

[BH97] R. Bharadwaj and C. Heitmeyer. Verifying SCR Requirements Speci-
�cations using State Exploration. In First ACM SIGPLAN Workshop

on Automatic Analysis of Software, Paris, France, January 1997. Asso-
ciation for Computing Machinery.

[BHL90] D. Bj�rner, C.A.R. Hoare, and H. Langmaack, editors. VDM '90:

VDM and Z { Formal Methods in Software Development, volume 428 of
Lecture Notes in Computer Science, Kiel, FRG, April 1990. Springer-
Verlag.

[BHMY89] William R. Bevier, Warren A. Hunt, Jr., J Strother Moore, and
William D. Young. An Approach to Systems Veri�cation. Journal

of Automated Reasoning, 5(4):411{428, December 1989.

140 References

[BHS91] F. Belina, D. Hogrefe, and A. Sarma. SDL with Applications from Pro-

tocol Speci�cation. BCS Practitioner Series. Prentice Hall International
Ltd., Hemel Hempstead, UK, 1991.

[BJ78] D. Brand and W. H. Joyner, Jr. Veri�cation of Protocols Using Sym-
bolic Execution. Computer Networks, 2:351{360, 1978.

[BM79] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press,
New York, NY, 1979.

[BM88] R. S. Boyer and J S. Moore. A Computational Logic Handbook. Aca-
demic Press, New York, NY, 1988.

[BMS+96] Ricky W. Butler, Paul S. Miner, Mandayam K. Srivas, Dave A. Greve,
and Steven P. Miller. A Bitvectors Library for PVS. NASA Technical
Memorandum 110274, NASA Langley Research Center, Hampton, VA,
August 1996.

[Boe87] B. Boehm. Industrial Software Metrics Top 10 List. IEEE Software,
4(5):84{85, September 1987.

[Boo91] G. Booch. Object-Oriented Design with Applications. Ben-
jamin/Cummings Series in Ada and Software Engineering. Ben-
jamin/Cummings Inc., Redwood City, CA, 1991.

[Bowen] http://www.comlab.ox.ac.uk/archive/formal-methods.html. Follow the
link \individual notations, methods and tools".

[Boy89] J.M. Boyle. Abstract Programming and Program Transformations -
An Approach to Reusing Programs. In T. J. Biggersta� and A. J.
Perlis, editor, Software Reusability, Volume I, pages 361{413. ACM
Press, Addison-Wesley Publishing Company, 1989.

[BP83] Paul Benacerraf and Hilary Putnam, editors. Philosophy of Mathe-

matics: Selected Readings. Cambridge University Press, Cambridge,
England, second edition, 1983.

[BR73] J. W. De Bakker and W. De Roever. A Calculus for Recursive Program
Schemes. In M. Nivat, editor, Automata, Languages, and Programming,
pages 167{196, Amsterdam, 1973. North Holland.

[Bre91] Algebraic Speci�cation Techniques in Object Oriented Programming

Environments, volume 562 of Lecture Notes in Computer Science.
Springer-Verlag, 1991.

[Bry86] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipu-
lation. IEEE Transactions on Computers, C-35(8), 1986.

NASA-GB-001-97 141

[Bry94] Arthur E. Bryson, Jr. Control of Spacecraft and Aircraft. Princeton
University Press, Princeton, New Jersey, 1994.

[BS93] Jonathan Bowen and Victoria Stavridou. The Industrial Take-up of
Formal Methods in Safety-Critical and other Areas: A Perspective. In
J. C. P Woodcock and P. G. Larsen, editors, FME '93: Industrial-

Strength Formal Methods, pages 183{195, Odense, Denmark, April
1993. Volume 670 of Lecture Notes in Computer Science, Springer-
Verlag.

[Bur69] R. Burstall. Proving Properties of Programs by Structured Induction.
Computing Journal, 12(1):41{48, 1969.

[Bur84] John P. Burgess. Basic Tense Logic. In Gabbay and Guenthner [GG84],
chapter II.2, pages 89{133.

[Bus90] Marilyn Bush. Improving Software Quality: The Use of Formal In-
spections at the Jet Propulsion Laboratory. In 12th International Con-

ference on Software Engineering, pages 196{199, Nice, France, March
1990. IEEE Computer Society.

[BY90] W. R. Bevier and W. D. Young. Machine-Checked Proofs of a Byzan-
tine Agreement Algorithm. Technical Report 55, Computational Logic
Incorporated, Austin, TX, June 1990.

[Car58] Rudolf Carnap. Introduction to Symbolic Logic and Its Applications.
Dover Publications, Inc., New York, NY, 1958. English translation of
Einf�uhrung in die symbolische Logik , 1954.

[CBK90] E. M. Clarke, I. A. Browne, and R. P. Kurshan. A Uni�ed Approach
for Showing Language Containment and Equivalence Between Various
Types of !-Automata. In A. Arnold, editor, CAAP '90, 15th Collo-

quium on Trees in Algebra and Programming, pages 103{116, Copen-
hagen, Denmark, May 1990. Volume 431 of Lecture Notes in Computer

Science, Springer-Verlag.

[CE81] E. M. Clarke and E. A. Emerson. Characterizing Properties of Parallel
Programs as Fixpoints. In 7th International Colloquium on Automata,

Languages and Programming. Volume 85 of Lecture Notes in Computer

Science, Springer-Verlag, 1981.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Veri�cation of
Finite-State Concurrent Systems using Temporal Logic Speci�cations.
ACM Transactions on Programming Languages and Systems, 8(2):244{
263, April 1986.

142 References

[CFJ93] E. M. Clarke, T. Filkorn, and S. Jha. Exploiting Symmetry in Temporal
Logic Model Checking. In Courcoubetis [Cou93].

[CGK89] E. M. Clarke, O. Grumberg, and R. P. Kurshan. A Synthesis of Two Ap-
proaches for Verifying Finite State Concurrent Systems. In A. R. Meyer
and M. A. Taitslin, editors, Logic at Botik '89, Symposium on Logi-

cal Foundations of Computer Science, pages 81{90, Pereslavl-Zalessky,
USSR, July 1989. Volume 363 of Lecture Notes in Computer Science,
Springer-Verlag.

[CGL92] EdmundM. Clarke, Orna Grumberg, and David E. Long. Model Check-
ing and Abstraction. In 19th ACM Symposium on Principles of Pro-

gramming Languages, pages 343{354, Albuquerque, NM, January 1992.
Association for Computing Machinery.

[CH89] Rance Cleaveland and Matthew Hennessy. Testing Equivalence as a
Bisimulation Equivalence. In International Workshop on Automatic

Veri�cation Methods for Finite State Systems, Grenoble, France, June
1989. Volume 407 of Lecture Notes in Computer Science, Springer-
Verlag.

[CHB92] D. Coleman, F. Hayes, and S. Bear. Introducing Objectcharts or How
to Use Statecharts in Object-Oriented Design. IEEE Transactions on

Software Engineering, 18(1):9{18, January 1992.

[CHJ86] B. Cohen, W. T. Harwood, and M. I. Jackson. The Speci�cation of

Complex Systems. Addison-Wesley, Wokingham, England, 1986.

[CHR92] Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A Calculus of Dura-
tions. Information Processing Letters, 40(5):269{276, 1992.

[CK90] E. M. Clarke and R. P. Kurshan, editors. Computer-Aided Veri�ca-

tion, CAV '90, volume 3 of DIMACS Series in Discrete Mathematics

and Theoretical Computer Science. American Mathematical Society and
Association for Computing Machinery, June 1990.

[CKM+91] Dan Craigen, Sentot Kromodimoeljo, Irwin Meisels, Bill Pase, and
Mark Saaltink. EVES: An Overview. In S. Prehn and W. J. Toetenel,
editors, VDM '91: Formal Software Development Methods, pages 389{
405, Noordwijkerhout, The Netherlands, October 1991. Volume 551 of
Lecture Notes in Computer Science, Springer-Verlag. Volume 1: Con-
ference Contributions.

[CL73] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and

Mechanical Theorem Proving. Computer Science and Applied mathe-
matics. Academic Press, New York, NY, 1973.

NASA-GB-001-97 143

[CLM89] E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional Model
Checking. In 4th Annual IEEE Symposium on Logic in Computer Sci-

ence, pages 353{362, Asilomar, Paci�c Grove, CA, June 1989. IEEE
Computer Society.

[CLS96] David Cyrluk, Patrick Lincoln, and N. Shankar. On Shostak's Decision
Procedure for Combinations of Theories. In M. A. McRobbie and J. K.
Slaney, editors, Automated Deduction|CADE-13, pages 463{477, New
Brunswick, NJ, July/August 1996. Volume 1104 of Lecture Notes in

Arti�cial Intelligence, Springer-Verlag.

[CLSS96] Rance Cleaveland, Philip Lewis, Scott Smolka, and Oleg Sokolsky. The
Concurrency Factory: A Development Environment for Concurrent
Systems. In Alur and Henzinger [AH96], pages 398{401.

[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A

Foundation. Addison-Wesley, Reading, MA, 1988.

[CMCHG96] E. Clarke, K. McMillan, S. Campos, and V. Hartonas-Garmhausen.
Symbolic Model Checking. In Alur and Henzinger [AH96], pages 419{
422.

[Coc84] Nino B. Cocchiarella. Philosophical Perspectives on Quanti�cation in
Tense and Modal Logic. In Gabbay and Guenthner [GG84], chapter
II.6, pages 309{353.

[COMP95] COMPASS '95 (Proceedings of the Ninth Annual Conference on Com-

puter Assurance), Gaithersburg, MD, June 1995. IEEE Washington
Section.

[Cou93] Costas Courcoubetis, editor. Computer-Aided Veri�cation, CAV '93,
volume 697 of Lecture Notes in Computer Science, Elounda, Greece,
June/July 1993. Springer-Verlag.

[CPS93] Rance Cleaveland, Joachim Parrow, and Bernhard Ste�en. The Con-
currency Workbench: A Semantics-Based Tool for the Veri�cation of
Concurrent Systems. ACM Transactions on Programming Languages

and Systems, 15(1):36{72, January 1993.

[CRS96] J. Chang, D. Richardson, and S. Sankar. Structural Speci�cation-Based
Testing with ADL. In ISSTA [ISSTA96], pages 62{70.

[CS89] Dan Craigen and Karen Summerskill, editors. Formal Methods for

Trustworthy Computer Systems (FM89), Halifax, Nova Scotia, Canada,
July 1989. Springer-Verlag Workshops in Computing.

144 References

[CS96] Rance Cleaveland and Steve Sims. The NCSU Concurrency Workbench.
In Alur and Henzinger [AH96], pages 394{397.

[CVWY92] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yanakakis. Memory-
E�cient Algorithms for the Veri�cation of Temporal Properties. In
Formal Methods in System Design 1, pages 275{288. Kluwer, 1992.

[CWB94] B. Cheng, E. Wang, and R. Bourdeau. A Graphical Environment for
Formally Developing Object-Oriented Software. In IEEE International

Conference on Tools with AI, San Diego, CA, November 1994.

[CY91a] P. Coad and E. Yourdon. Object-Oriented Analysis. Yourdon Press
Computing Series. Prentice Hall, Englewood Cli�s, NJ, 1991. Second
Edition.

[CY91b] P. Coad and E. Yourdon. Object-Oriented Design. Yourdon Press Com-
puting Series. Prentice Hall, Englewood Cli�s, NJ, 1991.

[Dah90] Ole-Johan Dahl. Object Orientation and Formal Techniques. In
D. Bjorner, C.A.R. Hoare, and H. Langmaack, editors, VDM'90: VDM

and Z, pages 1{11. Number 428 in Lecture Notes in Computer Science,
Springer-Verlag, 1990.

[dBdRR89] J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors. Step-

wise Re�nement of Distributed Systems, volume 430 of Lecture Notes in
Computer Science, REXWorkshop, Mook, The Netherlands, May/June
1989. Springer-Verlag.

[dBHdRR91] J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg,
editors. Real Time: Theory in Practice, volume 600 of Lecture Notes

in Computer Science, REX Workshop, Mook, The Netherlands, June
1991. Springer-Verlag.

[DDHY92] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Proto-
col Veri�cation as a Hardware Design Aid. In 1992 IEEE International

Conference on Computer Design: VLSI in Computers and Processors,
pages 522{525. IEEE Computer Society, 1992. Cambridge, MA, Octo-
ber 11-14.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood
Cli�s, NJ, 1976.

[Dil94] D. L. Dill, editor. Computer-Aided Veri�cation, CAV '94, volume 818 of
Lecture Notes in Computer Science, Stanford, CA, June 1994. Springer-
Verlag.

NASA-GB-001-97 145

[Dil96] D. Dill. The Mur� Veri�cation System. In Alur and Henzinger [AH96],
pages 390{393.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In van Leeuwen
[vL90], chapter 6, pages 243{320.

[DN89] J. Daintith and R. Nelson, editors. The Penguin Dictionary of Mathe-

matics. Penguin, London, UK, 1989.

[DR96] Ben L. Di Vito and Larry W. Roberts. Using Formal Methods to As-
sist in the Requirements Analysis of the Space Shuttle GPS Change Re-
quest. NASA Contractor Report 4752, NASA Langley Research Center,
Hampton, VA, August 1996.

[DST80] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the Common
Subexpressions Problem. Journal of the ACM, 27(4):758{771, October
1980.

[EL85] E.A. Emerson and C.L. Lei. E�cient Model Checking in Fragments of
the Propositional Mu-Calculus. In Proceedings of the 10th Symposium

on Principles of Programming Languages, pages 84{96, New Orleans,
LA, January 1985. Association for Computing Machinery.

[EL86] E. Allen Emerson and Chin-Laung Lei. E�cient Model Checking in
Fragments of the Propositional Mu-Calculus. In 2nd Annual IEEE

Symposium on Logic in Computer Science, pages 267{278. IEEE Com-
puter Society, June 1986.

[ES93] E.A. Emerson and A. Prasad Sistla. Symmetry and Model Checking.
In Courcoubetis [Cou93].

[Fag76] M. E. Fagan. Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal, 15(3):182{211, March 1976.

[Fag86] M. E. Fagan. Advances in Software Inspection. IEEE Transactions on

Software Engineering, SE-12(7):744{751, July 1986.

[FBHL84] A. A. Fraenkel, Y. Bar-Hillel, and A. Levy. Foundations of Set Theory,
volume 67 of Studies in Logic and the Foundations of Mathematics.
North-Holland, Amsterdam, The Netherlands, second printing, second
edition, 1984.

[FBWK92] Stuart Faulk, John Brackett, Paul Ward, and James Kirby, Jr. The
CoRE Method for Real-Time Requirements. IEEE Software, 9(5):22{
33, September 1992.

146 References

[FC87] S. Faulk and P. Clements. The NRL Software Cost Reduction (SCR)
Requirements Speci�cation Methodology. In Fourth International

Workshop on Software Speci�cation and Design, Monterey, CA, April
1987. IEEE Computer Society.

[FF93] Stephen Fickas and Anthony Finkelstein. Requirements Engineering
1993. In RE [RE93], pages v{vi.

[FKV94] M. D. Fraser, K. Kumar, and V. K. Vaishnavi. Strategies for Incorporat-
ing Formal Speci�cations in Software Development. Communications

of the ACM, 37(10):74{86, October 1994.

[FMJJ92] J. Fernandez, L. Mounier, C. Jard, and T. Jeron. On-the-
y Veri�cation
of Finite Transition Systems. In Formal Methods in System Design 1,
pages 251{273. Kluwer, 1992.

[FN86] A. Furtado and E. Neuhold. Formal Techniques for Data Base Design.
Springer-Verlag, 1986.

[Gar84] James W. Garson. Quanti�cation in Modal Logic. In Gabbay and
Guenthner [GG84], chapter II.5, pages 249{307.

[GAS89] D.I. Good, R.L. Akers, and L.M. Smith. Report on Gypsy 2.05. Tech-
nical Report 1, Computational Logic Inc., Austin, TX, January 1989.

[Gen70] Gerhard Gentzen. Collected Papers, edited by M. E. Szabo. Studies in
Logic. North Holland, New York, NY, 1970.

[GG83] Dov M. Gabbay and Franz Guenthner, editors. Handbook of Philosophi-
cal Logic{Volume I: Elements of Classical Logic, volume 164 of Synthese
Library. D. Reidel Publishing Company, Dordrecht, Holland, 1983.

[GG84] Dov M. Gabbay and Franz Guenthner, editors. Handbook of Philo-

sophical Logic{Volume II: Extensions of Classical Logic, volume 165 of
Synthese Library. D. Reidel Publishing Company, Dordrecht, Holland,
1984.

[Gil60] P. C. Gilmore. A Proof Method for Quanti�cation Theory: Its Justi-
�cation and Realization. IBM Journal of Research and Development,
4:28{35, 1960.

[GKK+88] J. Goguen, C. Kirchner, H. Kirchner, A. M�egrelis, J. Meseguer, and
T. Winkler. An Introduction to OBJ3. In Proceedings of the Conference
on Conditional Term Rewriting, pages 258{263, Orsay, France, 1988.
Number 308 in Lecture Notes in Computer Science, Springer-Verlag.

NASA-GB-001-97 147

[GL96] P. Godefroid and D. E. Long. Symbolic Protocol Veri�cation with
Queue BDDs. In 11th Annual IEEE Symposium on Logic in Computer

Science, pages 198{206, New Brunswick, New Jersey, July 1996. IEEE
Computer Society.

[Gla95] James Glanz. Mathematical Logic Flushes Out the Bugs in Chip De-
signs. Science, 267:332{333, January 20, 1995.

[GM93] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL:

A Theorem Proving Environment for Higher-Order Logic. Cambridge
University Press, Cambridge, UK, 1993.

[GMT+80] S. L. Gerhart, D. R. Musser, D. H. Thompson, D. A. Baker, R. L.
Bates, R. W. Erickson, R. L. London, D. G. Taylor, and D. S. Wile.
An Overview of A�rm: A Speci�cation and Veri�cation System. In
S. H. Lavington, editor, Information Processing '80, pages 343{347,
Australia, October 1980. IFIP, North-Holland Publishing Company.

[GMW79] M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF:

A Mechanised Logic of Computation, volume 78 of Lecture Notes in

Computer Science. Springer-Verlag, 1979.

[GNRR93] Robert L. Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel,
editors. Hybrid Systems, volume 736 of Lecture Notes in Computer

Science, New York, NY, 1993. Springer-Verlag.

[God90] P. Godefroid. Using Partial Orders to Improve Automatic Veri�cation
Methods. In Clarke and Kurshan [CK90], pages 321{339.

[God96] Partial-Order Methods for the Veri�cation of Concurrent Systems, An

Approach to the State-Explosion Problem, volume 1032 of Lecture Notes
in Computer Science. Springer-Verlag, 1996.

[Gor] M. J. Gordon. Varieties of Theorem Provers. Unpublished manuscript.

[Gor86] M. Gordon. Why Higher-Order Logic is a Good Formalism for Speci-
fying and Verifying Hardware. In G. Milne and P. A. Subrahmanyam,
editors, Formal Aspects of VLSI Design, pages 153{177. Elsevier, 1986.
Reprinted in Yoeli [Yoe90, pp. 57{77].

[Gor89] Michael J. C. Gordon. Mechanizing Programming Logics in Higher-
Order Logic. In G. Birtwistle and P. A. Subrahmanyam, editors, Cur-
rent Trends in Hardware Veri�cation and Theorem Proving, pages 387{
439, New York, NY, 1989. Springer-Verlag.

148 References

[GPS96] Patrice Godefroid, Doron Peled, and Mark Staskauskas. Using Partial-
Order Methods in the Formal Validation of Industrial Concurrent Pro-
grams. IEEE Transactions on Software Engineering, 22(7):496{507,
July 1996.

[Gro92] RAISE Language Group. The RAISE Speci�cation Language. BCS
Practitioner Series. Prentice Hall, Hemel Hempstead, UK, 1992.

[GS90] Susanne Graf and Bernhard Ste�en. Compositional Minimization of
Finite-State Systems. In E. M. Clarke and R. P. Kurshan, editors,
Computer-Aided Veri�cation, CAV '90, pages 186{196, New Brunswick,
NJ, June 1990. Volume 531 of Lecture Notes in Computer Science,
Springer-Verlag.

[GS93] David Gries and Fred B. Schneider. A Logical Approach to Discrete

Math. Texts and Monographs in Computer Science. Springer-Verlag,
New York, NY, 1993.

[H+78] K. L. Heninger et al. Software Requirements for the A-7E Aircraft.
NRL Report 3876, Naval Research Laboratory, November 1978.

[H+90] D. Harel et al. STATEMATE: A Working Environment for the Devel-
opment of Complex Reactive Systems. IEEE Transactions on Software

Engineering, 16(4):403{414, April 1990.

[Haj78] J. Hajek. Automatically Veri�ed Data Transfer Protocols. In Proceed-

ings of the 4th ICCC, pages 749{756, Kyoto, Japan, 1978.

[Hal84] Michael Hallett. Cantorian Set Theory and Limitation of Size. Num-
ber 10 in Oxford Logic Guides. Oxford University Press, Oxford, Eng-
land, 1984.

[Hal90] A. Hall. Using Z as a Speci�cation Calculus for Object-Oriented
Systems. In D. Bjorner, C.A.R. Hoare, and H Langmaack, editors,
VDM'90: VDM and Z, pages 290{318. Number 428 in Lecture Notes
in Computer Science, Springer-Verlag, 1990.

[Har84] David Harel. Dynamic Logic. In Gabbay and Guenthner [GG84], chap-
ter II.10, pages 497{604.

[Har87] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Sci-
ence of Computer Programming, 8(3):231{274, 1987.

[Hat82] William S. Hatcher. The Logical Foundations of Mathematics. Perga-
mon Press, Oxford, UK, 1982.

NASA-GB-001-97 149

[Hay87] Ian Hayes, editor. Speci�cation Case Studies. Prentice Hall Interna-
tional Ltd., Hemel Hempstead, UK, 1987.

[Haz83] Allen Hazen. Predicative Logics. In Gabbay and Guenthner [GG83],
chapter I.5, pages 331{407.

[HB95a] M. G. Hinchey and J. P. Bowen, editors. Applications of Formal Meth-

ods. Prentice Hall International Ltd., Hemel Hempstead, UK, 1995.
International Series in Computer Science.

[HB95b] M. G. Hinchey and J. P. Bowen. Applications of Formal Methods FAQ.
[HB95a], pages 1{15.

[HBGL95] Constance Heitmeyer, Alan Bull, Carolyn Gasarch, and Bruce Labaw.
SCR*: A Toolset for Specifying and Analyzing Requirements. In COMP
[COMP95], pages 109{122.

[HC91] F. Hayes and D. Coleman. Coherent Models for Object-Oriented Anal-
ysis. In OOPSLA '91 (Object-Oriented Programming Systems, Lan-

guages, and Applications 1991) Conference Proceedings, Phoenix, AZ,
October 1991. Communications of the ACM.

[HC95] D. N. Hoover and Zewei Chen. Tablewise, a Decision Table Tool. In
COMP [COMP95], pages 97{108.

[HCL95] David Hamilton, Rick Covington, and Alice Lee. Experience Report
on Requirements Reliability Engineering Using Formal Methods. In IS-
SRE '95: International Conference on Software Reliability Engineering,
Toulouse, France, 1995.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous
Data
ow Programming Language Lustre. Proceedings of the IEEE,
79(9):1305{1320, September 1991.

[Hen80] K. L. Heninger. Specifying Software Requirements for Complex Sys-
tems: New Techniques and Their Application. IEEE Transactions on

Software Engineering, SE-6(1):2{13, January 1980.

[HFB93] N. Halbwachs, J.-C. Fernandez, and A. Bouajjanni. An executable
temporal logic to express safety properties and its connection with the
language Lustre. In Sixth International Symposium on Lucid and In-

tensional Programming, ISLIP'93, Quebec, April 1993.

[HGH96] D. N. Hoover, David Guaspari, and Polar Humenn. Applications of For-
mal Methods to Speci�cation and Safety of Avionics Software. NASA
Contractor Report 4723, NASA Langley Research Center, Hampton,
VA, April 1996. (Work performed by Odyssey Research Associates).

150 References

[HHK96] R. Hardin, Z. Har'El, and R. Kurshan. COSPAN. In Alur and Hen-
zinger [AH96], pages 423{427.

[HJL95] Constance Heitmeyer, Ralph Je�ords, and Bruce Labaw. Tools for An-
alyzing SCR-Style Requirements Speci�cations: A Formal Foundation.
Technical Report 7499, Naval Research Laboratory, Washington DC,
1995. In press.

[HL94] Constance Heitmeyer and Nancy Lynch. The Generalized Railroad
Crossing: A Case Study in Formal Veri�cation of Real-Time Systems.
In Real Time Systems Symposium, pages 120{131, San Juan, Puerto
Rico, December 1994. IEEE Computer Society.

[HLK95] Constance Heitmeyer, Bruce Labaw, and Daniel Kiskis. Consistency
Checking of SCR-Style Requirements Speci�cations. In International

Symposium on Requirements Engineering, York, England, March 1995.
IEEE Computer Society.

[HLR92] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and Verifying
Real-Time Systems by Means of the Synchronous Data-Flow Program-
ming Language Lustre. IEEE Transactions on Software Engineering,

Special Issue on the Speci�cation and Analysis of Real-Time Systems,
September 1992.

[HN96] D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts.
ACM Transactions on Software Engineering Methodology, 5(4):293{
333, 1996.

[Hoa69] C. A. R. Hoare. An Axiomatic Basis of Computer Programming. Com-
munications of the ACM, 12(10):576{580, October 1969.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall
International Series in Computer Science. Prentice Hall, Hemel Hemp-
stead, UK, 1985.

[Hol] G. Holzmann. Personnal communication.

[Hol81] G. Holzmann. A Theory for Protocol Validation. In Proceedings of the

First IFIP PSTV Conference on Protocol Speci�cation, Testing, and

Veri�cation, pages 377{391, Teddington, UK, 1981. Also appeared in
IEEE Transactions on Computers, C-31(8):730{738, August 1982.

[Hol84] G. Holzmann. Backward Symbolic Execution of Protocols. In Proceed-

ings of the Fourth IFIP PSTV Conference on Protocol Speci�cation,

Testing, and Veri�cation, pages 19{30, Skytop, PA, 1984.

NASA-GB-001-97 151

[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice
Hall Software Series. Prentice-Hall, 1991.

[HP73] P. Hitchcock and D. Park. Induction Rules and Termination Proofs.
In M. Nivat, editor, Automata, Languages, and Programming, pages
225{251, Amsterdam, 1973. North Holland.

[HP96] G. Holzmann and D. Peled. The State of SPIN. In Alur and Henzinger
[AH96], pages 385{389.

[HS96] Klaus Havelund and N. Shankar. Experiments in Theorem Proving and
Model Checking for Protocol Veri�cation. In Formal Methods Europe

FME '96, pages 662{681, Oxford, UK, March 1996. Number 1051 in
Lecture Notes in Computer Science, Springer-Verlag.

[Hun87] Warren A. Hunt, Jr. The Mechanical Veri�cation of a Microprocessor
Design. Technical Report 6, Computational Logic Incorporated, Austin,
TX, 1987.

[ICRE94] ICRE '94 (Proceedings of the First International Conference on Re-

quirements Engineering), Colorado Springs, CO, April 1994. IEEE
Computer Society.

[ICRE96] ICRE '96 (Proceedings of the Second International Conference on Re-

quirements Engineering), Colorado Springs, CO, April 1996. IEEE
Computer Society.

[ID93] C. Norris Ip and David L. Dill. Better Veri�cation through Symmetry.
In CHDL '93: 11th Conference on Computer Hardware Description

Languages and their Applications, pages 87{100. IFIP, 1993. Ottawa,
Canada.

[ID96a] C. Norris Ip and David L. Dill. State Reduction Using Reversible Rules.
In Proceedings of the 33rd Design Automation Conference, pages 564{
567, Las Vegas, NV, June 1996.

[ID96b] C. Norris Ip and David L. Dill. Verifying Systems with Replicated
Components in Murphi. In Alur and Henzinger [AH96], pages 147{158.

[IEEE194] Software Development, IEEE Standard 1498. IEEE Publications O�ce,
Los Alamitos, CA, March 1994. Interim Standard.

[ISO88] LOTOS|A Formal Description Technique Based on the Temporal

Ordering of Observational Behavior. International Organization for
Standardization|Information Processing Systems|Open Systems In-
terconnection, Geneva, Switzerland, September 1988. ISO Standard
8807.

152 References

[ISSTA96] ISSTA '96 (Proceedings of the 1996 Symposium on Software Testing and

Analysis), San Diego, CA, January 1996. Association for Computing
Machinery.

[Jac95] M. Jackson. Software Requirements and Speci�cations, a lexicon of

practice, principles and prejudices. ACM Press Books. Addison-Wesley,
Reading, MA, 1995.

[Jon90] Cli� B. Jones. Systematic Software Development Using VDM. Prentice
Hall International Series in Computer Science. Prentice Hall, Hemel
Hempstead, UK, second edition, 1990.

[Kay91] Richard Kaye. Models of Peano Arithmetic. Number 15 in Oxford Logic
Guides. Oxford University Press, Oxford, England, 1991.

[KB70] D. E. Knuth and P. B. Bendix. Simple Word Problems in Universal
Algebras. In Computational Problems in Abstract Algebra, pages 263{
297. Pergamon Press, Oxford, UK, 1970. Reprinted in Automation of

Reasoning 2 (Springer-Verlag, Berlin, 1983) 342{376.

[KM94] Matt Kaufmann and J Strother Moore. Design Goals for ACL2. Tech-
nical Report 101, Computational Logic, Inc., Austin, TX, August 1994.

[KM96] Matt Kaufmann and J Strother Moore. ACL2: An Industrial Strength
Version of Nqthm. In COMPASS '96 (Proceedings of the Eleventh An-

nual Conference on Computer Assurance), pages 23{34, Gaithersburg,
MD, June 1996. IEEE Washington Section.

[Knu86] Donald Knuth. Computers & Typesetting / A: The TEXbook. Addison-
Wesley, Reading, MA, 1986.

[Kow88] R. A. Kowalski. The Early Years of Logic Programming. Communica-
tions of the ACM, 31(1):38{42, 1988.

[Koz83] Dexter Kozen. Results on the Propositional �-Calculus. Theoretical

Computer Science, 27:333{354, 1983.

[Kri63a] Saul Kripke. Semantical Analysis of Modal Logic I, Normal Proposi-
tional Calculi. Zeitschrift f�ur Mathematische Logik und Grundlagen der

Mathematik, 9:67{96, 1963. VEB Deutscher Verlag der Wissenschaften,
Berlin.

[Kri63b] Saul Kripke. Semantical Considerations on Modal Logic. Acta Philo-

sophica Fennica, 16:83{94, 1963.

NASA-GB-001-97 153

[Kri65] Saul Kripke. Semantical Analysis of Modal Logic II, Non-Normal Modal
Propositional Calculi. In J. W. Addison, L. Henkin, and A. Tarski,
editors, The Theory of Models, pages 206{220. North-Holland, Amster-
dam, 1965.

[Kro93] K. Kron�of, editor. Method Integration: Concepts and Case Studies.
John Wiley & Sons, New York, NY, 1993.

[KSH92] John C. Kelly, Joseph S. Sherif, and Jonathan Hops. An Analysis of De-
fect Densities Found During Software Inspections. Journal of Systems
Software, 17:111{117, 1992.

[KTB88] B. Konikowska, A. Tarlecki, and A. Blikle. A Three-Valued Logic
for Software Speci�cation and Validation. In R. Bloom�eld, L. Mar-
shall, and R. Jones, editors, VDM'88: VDM | The Way Ahead, pages
218{242. Number 328 in Lecture Notes in Computer Science, Springer-
Verlag, 1988.

[Kur94] Robert P. Kurshan. Computer-Aided Veri�cation of Coordinating Pro-

cesses. Princeton Series in Computer Science. Princeton University
Press, Princeton, NJ, 1994.

[KZ89] D. Kapur and H. Zhang. An Overview of Rewrite Rule Laboratory
(RRL). In Proceedings of the Third International Conference on Rewrit-
ing Techniques and Applications, pages 559{563, Chapel Hill, NC, 1989.
Number 355 in Lecture Notes in Computer Science, Springer-Verlag.

[LA94] R. Lutz and Y. Ampo. Experience Report: Using Formal Methods
for Requirements Analysis of Critical Spacecraft Software. In Proceed-

ings of the Nineteenth Annual Software Engineering Workshop, NASA

Goddard Space Flight Center, Greenbelt, MD, December 1994.

[Lam89] Leslie Lamport. A Simple Approach to Specifying Concurrent Systems.
Communications of the ACM, 32(1):32{45, January 1989.

[Lam95] Leslie Lamport. Types are not Harmless, July 1995.
http://www.research.digital.com/SRC/tla/tla.html (under Related
Issues).

[Lan96] Christopher Landauer. Discrete Event Systems in Rewriting Logic. In
J. Meseguer, editor, First International Workshop on Rewriting Logic

and its Applications, pages 309{320. Elsevier Science B.V., September
1996. Electronic Notes in Theoretical Computer Science, Volume 4.

[Lev79] Azriel Levy. Basic Set Theory. Perspectives in Mathematical Logic.
Springer-Verlag, Berlin, Germany, 1979.

154 References

[LFB96] Peter Gorm Larsen, John Fitzgerald, and Tom Brookes. Applying For-
mal Speci�cation in Industry. IEEE Software, 13(3):48{56, May 1996.

[LG96] K. Lano and S. Goldsack. Integrating Formal and Object-Oriented
Methods: The VDM++ Approach. In 2nd Methods Integration Work-

shop, Leeds, UK, 1996. To appear in Springer-Verlag EWTC Series.

[LHHR94] Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and
Jon Damon Reese. Requirements Speci�cation for Process-Control
Systems. IEEE Transactions on Software Engineering, 20(9):684{707,
September 1994.

[Lin94] Richard Linger. Cleanroom Process Model. IEEE Software, 11(2):50{
58, March 1994.

[LO88] E. Lusk and R. Overbeek, editors. 9th International Conference on Au-

tomated Deduction (CADE), volume 310 of Lecture Notes in Computer

Science, Argonne, IL, May 1988. Springer-Verlag.

[LPPU94] M. Lowry, A. Philpot, T. Pressburger, and I. Underwood. A Frame-
work for Distributed System Designs. In Proceedings, KBSE '94, The

Ninth Knowledge-Based Software Engineering Conference, pages 48{57,
Monterey, California, September 1994. IEEE Computer Society Press.

[LR93a] Patrick Lincoln and John Rushby. Formal Veri�cation of an Algorithm
for Interactive Consistency under a Hybrid Fault Model. NASA Con-
tractor Report 4527, NASA Langley Research Center, Hampton, VA,
July 1993.

[LR93b] Patrick Lincoln and John Rushby. Formal Veri�cation of an Algorithm
for Interactive Consistency under a Hybrid Fault Model. In Courcou-
betis [Cou93], pages 292{304.

[LSB92] R. Letz, J. Schumann, and S. Bayerl. SETHEO: A High-Performance
Theorem Prover. Journal of Automated Reasoning, 8(2):183{212, 1992.

[LSVW96] N. Lynch, R. Segala, F. Vaandrager, and H. B. Weinberg. Hybrid I/O
Automata. In Alur et al. [AHS96], pages 496|510.

[Lut93] Robyn R. Lutz. Analyzing Software Requirements Errors in Safety-
Critical Embedded Systems. In IEEE International Symposium on Re-

quirements Engineering, pages 126{133, San Diego, CA, January 1993.

[Lyn96] N. Lynch. Modeling and Veri�cation of Automated Transit Systems,
using Timed Automata, Invariants, and Simulations. In Alur et al.
[AHS96], pages 449|463.

NASA-GB-001-97 155

[Mac95] Donald MacKenzie. The Automation of Proof: A Historical and Socio-
logical Exploration. IEEE Annals of the History of Computing, 17(3):7{
29, Fall 1995.

[Man94] Z. Manna. Beyond Model Checking. In Dill [Dil94], pages 220{221.

[MC85] B. Mishra and E. M. Clarke. Hierarchical Veri�cation of Asynchronous
Circuits Using Temporal Logic. Theoretical Computer Science, 38:269{
291, 1985.

[MC94] A. Moreira and R. Clark. Combining Object-Oriented Analysis and
Formal Description Techniques. In Tokoro and Pareschi [TP94], pages
344{364.

[McI95] A. McIver. Why Be Formal. New Scientist Magazine, pages 34{38,
1995. 26 August.

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, Boston, MA, 1993.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall Interna-
tional Series in Computer Science. Prentice Hall, Hemel Hempstead,
UK, 1989.

[Mil93] H. D. Mills. Zero Defect Software: Cleanroom Engineering. In Advances
in Computers, volume 36, pages 1{41. 1993.

[Min95] Paul S. Miner. De�ning the IEEE-854 Floating-Point Standard in PVS.
NASA Technical Memorandum 110167, NASA Langley Research Cen-
ter, Hampton, VA, June 1995.

[ML96] Paul S. Miner and James F. Leathrum, Jr. Veri�cation of IEEE Compli-
ant Subtractive Division Algorithms. In Mandayam Srivas and Albert
Camilleri, editors, Formal Methods in Computer-Aided Design (FM-

CAD '96), pages 64{78, Palo Alto, CA, November 1996. Volume 1166
of Lecture Notes in Computer Science, Springer-Verlag.

[MLR+96] F. Modugno, N. Leveson, J. Reese, K. Partridge, and S. Sandys. In-
tegrated Safety Analysis of Requirements Speci�cations. Draft, May
1996.

[MMU83] MMU Systems Data Book. NASA MMU-SE-17-73, revision: Basic edi-
tion, June 1983. Volume 1 of MMU Operational Data Book.

[Mos85] Ben Moszkowski. A Temporal Logic for Multilevel Reasoning about
Hardware. IEEE Computer, 18(2):10{19, 1985.

156 References

[MPJ94] Paul S. Miner, Shyamsundar Pullela, and Steven D. Johnson. Interac-
tion of Formal Design Systems in the Development of a Fault-Tolerant
Clock Synchronization Circuit. Technical Report 405, Computer Sci-
ence Department, Indiana University, Bloomington, IN, April 1994.

[MS95] Steven P. Miller and Mandayam Srivas. Formal Veri�cation of the
AAMP5 Microprocessor: A Case Study in the Industrial Use of Formal
Methods. InWIFT '95: Workshop on Industrial-Strength Formal Speci-

�cation Techniques, pages 2{16, Boca Raton, FL, 1995. IEEE Computer
Society.

[Mus80] D. R. Musser. Abstract Data Type Speci�cation in the A�rm System.
IEEE Transactions on Software Engineering, 6(1):24{32, January 1980.

[MW90] Carroll Morgan and J. C. P. Woodcock, editors. Springer-Verlag Work-
shops in Computing, January 1990.

[MW95] P. Mukherjee and B. Wichmann. Formal Speci�cation of the STV Al-
gorithm. In Hinchey and Bowen [HB95a], pages 73{96.

[NASA-92] NASA Software Assurance Standard. NASA O�ce of Safety and Mis-
sion Assurance, November 1992.

[NASA-93a] NASA Software Formal Inspections Standard. NASA Engineering Di-
vision Publication, 1993.

[NASA-93b] NASA Software Formal Inspections Guidebook. NASA O�ce of Safety
and Mission Assurance, August 1993.

[NASA-95a] Formal Methods Speci�cation and Veri�cation Guidebook for Software

and Computer Systems, Volume I: Planning and Technology Insertion.
NASA O�ce of Safety and Mission Assurance, Washington, DC, July
1995. NASA-GB-002-95, Release 1.0.

[NASA-95b] NASA Software Strategic Plan. National Aeronautics and Space Ad-
ministration, July 1995.

[NASA-96] NASA Guidebook for Safety Critical Software Analysis and Develop-

ment. NASA O�ce of Safety and Mission Assurance, April 1996.

[NASA93] Formal Methods Demonstration Project for Space Applications { Phase

I Case Study: Space Shuttle Orbit DAP Jet Select. Multi-Center NASA
Team from Jet Propulsion Laboratory, Johnson Space Center, and Lan-
gley Research Center, December 1993. NASA Code Q Final Report
(Unnumbered).

NASA-GB-001-97 157

[Nay95] P. Pandurang Nayak. Automated Modeling of Physical Systems. ACM
Distinguished Theses. sv, Berlin, Germany, 1995.

[NO79] G. Nelson and D. C. Oppen. Simpli�cation by Cooperating Decision
Procedures. ACM Transactions on Programming Languages and Sys-

tems, 1(2):245{257, 1979.

[Olt95] Walter Oltho�, editor. 9th European Conference on Object-Oriented

Programming (ECOOP '95), volume 952 of Lecture Notes in Computer

Science, �Aarhus, Denmark, August 1995. Springer-Verlag.

[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke.
Formal Veri�cation for Fault-Tolerant Architectures: Prolegomena to
the Design of PVS. IEEE Transactions on Software Engineering,
21(2):107{125, February 1995.

[OSR93a] S. Owre, N. Shankar, and J. M. Rushby. The PVS Speci�cation Lan-

guage. Computer Science Laboratory, SRI International, Menlo Park,
CA, February 1993. A new edition for PVS Version 2 is expected in
1997.

[OSR93b] S. Owre, N. Shankar, and J. M. Rushby. User Guide for the PVS

Speci�cation and Veri�cation System. Computer Science Laboratory,
SRI International, Menlo Park, CA, February 1993. Three volumes:
Language, System, and Prover Reference Manuals; A new edition for
PVS Version 2 is expected in late 1997.

[Par70] D. M. R. Park. Fixpoint Induction and Proofs of Program Properties.
Machine Intelligence, 5, 1970.

[Par76] David Park. Finiteness is Mu-Ine�able. Theoretical Computer Science,
3:173{181, 1976.

[Par91] David L. Parnas. Proposed Standard for Computers in the Safety

Systems of Nuclear Power Stations. Telecommunications Research
Institute of Ontario (TRIO), Queen's University, Kingston, Ontario,
Canada, March 1991.

[Par95] D. L. Parnas. Using Mathematical Models in the Inspection of Critical
Software. In Hinchey and Bowen [HB95a], pages 17{31.

[Pau84] L. C. Paulson. Verifying the Uni�cation Algorithm in LCF. Technical
Report 50, University of Cambridge Computer Laboratory, Cambridge,
UK, 1984.

[Pau88] Lawrence C. Paulson. Isabelle: The next seven hundred theorem
provers. In Lusk and Overbeek [LO88], pages 772{773.

158 References

[Pau91] L. C. Paulson. ML for the Working Programmer. Cambridge University
Press, Cambridge, UK, 1991.

[Pau92] Lawrence C. Paulson. Designing a Theorem Prover. In S. Abramsky,
Dov M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in

Computer Science; Volume 2 Background: Computational Structures,
pages 415{475. Oxford Science Publications, Oxford, UK, 1992.

[Pau97] L. C. Paulson. Generic Automatic Proof Tools. In R. Vero�, editor,
Automated Reasoning and Its Applications. The MIT Press, 1997. To
appear.

[Pauls] http://www.cl.cam.ac.uk/users/lcp/hotlist#Systems.

[Pel93] D. Peled. All from One, One for All, on Model-Checking Using Repre-
sentatives. In Courcoubetis [Cou93], pages 409{423.

[Pel94] D. Peled. Combining Partial Order Reductions with On-the-
y Model-
Checking. In Dill [Dil94], pages 377{390.

[Per90] Dominique Perrin. Finite Automata. In van Leeuwen [vL90], chapter 1,
pages 1{57.

[PM91] David L. Parnas and Jan Madey. Functional Documentation for
Computer Systems Engineering (Version 2). Technical Report TRIO-
CRL 237, Telecommunications Research Institute of Ontario (TRIO),
Queen's University, Kingston, Ontario, Canada, September 1991.

[Pnu77] A. Pnueli. The Temporal Logic of Programs. In Proc. 18th Sympo-

sium on Foundations of Computer Science, pages 46{57, Providence,
RI, November 1977. ACM.

[PPV60] D. Prawitz, H. Prawitz, and N. Voghera. A Mechanical Proof Proce-
dure and its Realization in an Electronic Computer. Journal of the

Association for Computing Machinery, 7:102{128, 1960.

[QS82] J. P. Queille and J. Sifakis. Speci�cation and Veri�cation of Concurrent
Systems in Cesar. In Proc. 5th International Symposium on Program-

ming, pages 337{351, Turin, Italy, April 1982. Volume 137 of Lecture
Notes in Computer Science, Springer-Verlag.

[Que82] J. P. Queille. Le Syst�eme C�esar: Description, Sp�eci�cation et Analyse

des Applications R�eparties. PhD thesis, Computer Science Department,
Universit�e de Grenoble, June 1982.

NASA-GB-001-97 159

[Rat97] UML Documentation. Rational Software Corporation, Santa Clara,
CA, 1997. Several documents, including \UML Summary", \UML
Notation Guide", and \UML Semantics" are available via the URL
http://www.rational.com/uml.

[RB91] J. Rumbaugh and M. Blaha. Tutorial Notes: Object-Oriented Modeling
and Design. In OOPSLA '91 (Object-Oriented Programming Systems,

Languages, and Applications 1991) Conference Proceedings, Phoenix,
AZ, October 1991. Communications of the ACM.

[RB96] Larry W. Roberts and Mike Beims. Using Formal Methods to Assist in
the Requirements Analysis of the Space Shuttle HAC Change Request
(CR90960E). JSC Technical Report, Loral Space Information Systems,
Houston, TX, September 1996.

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,
and William Lorensen. Object-Oriented Modeling and Design. Prentice
Hall, Englewood Cli�s, NJ, 1991.

[RE80] B. Razouk and G. Estrin. Modeling and Veri�cation of Communica-
tion Protocols in SARA: the X.21 Interface. IEEE Transactions on

Computers, C-29(12):1038{1052, 1980.

[RE93] RE '93 (Proceedings of the IEEE International Symposium on Require-

ments Engineering), San Diego, CA, January 1993. IEEE Computer
Society.

[RE95] RE '95 (Proceedings of the IEEE International Symposium on Require-

ments Engineering), York, England, March 1995. IEEE Computer So-
ciety.

[Res69] N. Rescher. Many-Valued Logic. McGraw-Hill, New York, NY, 1969.

[RG92] K.S. Rubin and A. Goldberg. Object Behavior Analysis. Communica-
tions of the ACM, 35(9):48{62, September 1992.

[Rob65] J. A. Robinson. A Machine-Oriented Logic Based on the Resolu-
tion Principle. Journal of the Association for Computing Machinery,
12(1):23{41, January 1965.

[Roc91] Space Shuttle Orbiter Operational Level C Functional Subsystem Soft-

ware Requirements: Guidance Navigation and Control|Part C Flight

Control Orbit DAP. Rockwell International, Space Systems Division,
OI-21 edition, February 1991.

160 References

[RSS95] S. Rajan, N. Shankar, and M.K. Srivas. An Integration of Model-
Checking with Automated Proof Checking. In Pierre Wolper, editor,
Computer-Aided Veri�cation, CAV '95, pages 84{97, Liege, Belgium,
June 1995. Volume 939 of Lecture Notes in Computer Science, Springer-
Verlag.

[RT52] J. B. Rosser and A. R. Turquette. Many-Valued Logics. North-Holland,
Amsterdam, Holland, 1952.

[Rus92] John Rushby. Formal Veri�cation of an Oral Messages Algorithm for
Interactive Consistency. Technical Report SRI-CSL-92-1, Computer
Science Laboratory, SRI International, Menlo Park, CA, July 1992.
Also available as NASA Contractor Report 189704, October 1992.

[Rus93a] John Rushby. Formal Methods and Digital Systems Validation for Air-

borne Systems. Federal Aviation Administration Technical Center, At-
lantic City, NJ, 1993. Forthcoming chapter for \Digital Systems Vali-
dation Handbook," DOT/FAA/CT-88/10.

[Rus93b] John Rushby. Formal Methods and Digital Systems Validation for Air-
borne Systems. Technical Report SRI-CSL-93-7, Computer Science
Laboratory, SRI International, Menlo Park, CA, December 1993. Also
available as NASA Contractor Report 4551, December 1993.

[Rus96] John Rushby. Automated Deduction and Formal Methods. In Alur and
Henzinger [AH96], pages 169{183.

[RvH93] John Rushby and Friedrich von Henke. Formal Veri�cation of Algo-
rithms for Critical Systems. IEEE Transactions on Software Engineer-

ing, 19(1):13{23, January 1993.

[RW69] G. Robinson and L. Wos. Paramodulation and Theorem-Proving in
First Order Theories with Equality. In Machine Intelligence, Edin-
burgh, Scotland, 1969. Volume 4, Edinburgh University Press.

[SAFER92] Project Requirements Document for the Simpli�ed Aid for EVA Rescue
(SAFER) Flight Test Project, December 1992. NASA JSC-24691.

[SAFER94a] Simpli�ed Aide for EVA Rescue (SAFER). NASA JSC-26283, Septem-
ber 1994. Operations Manual.

[SAFER94b] Simpli�ed Aid for EVA Rescue (SAFER) Flight Test Project - Flight
Test Article Prime Item Development Speci�cation, July 1994. NASA
JSC-25552.

[SB69] D. Scott and J. W. De Bakker. A Theory of Programs. Unpublished
Manuscript. IBM. Vienna, 1969.

NASA-GB-001-97 161

[SBC92] Susan Stepney, Rosalind Barden, and David Cooper, editors. Object

Orientation in Z. Workshops in Computing. Springer-Verlag, 1992.

[SD96] Ulrich Stern and David L. Dill. A New Scheme for Memory-E�cient
Probabilistic Veri�cation. In Proceedings of the IFIP TC6/WG6.1 Joint

International Conference on Formal Description Techniques for Dis-

tributed Systems and Communications Protocols, and Protocol Speci�-

cation, Testing and Veri�cation, 1996. To appear.

[SE87] Software Engineering Standards. Institute of Electrical and Electronics
Engineers, Inc., New York, NY, 1987.

[SG96] D.R. Smith and C.C. Green. Toward Practical Applications of Soft-
ware Synthesis. In FMSP'96, The First Workshop on Formal Methods

in Software Practice, pages 31{39, San Diego, CA, January 1996. As-
sociation for Computing Machinery.

[SH94] S. Sankar and R. Hayes. Specifying and Testing Software Components
Using ADL. Technical Report SMLI TR-94-23, Sun Microsystems Lab-
oratories, Inc.(SMLI), Mountain View, CA, April 1994.

[Sha93] N. Shankar. Abstract Datatypes in PVS. Technical Report SRI-CSL-
93-9, Computer Science Laboratory, SRI International, Menlo Park,
CA, December 1993.

[Sha94] N. Shankar. Metamathematics, Machines, and G�odel's Proof. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University
Press, Cambridge, UK, 1994.

[Sha96] Natarajan Shankar. Unifying Veri�cation Paradigms. In Bengt Jon-
sson and Joachim Parrow, editors, Formal Techniques in Real-Time

and Fault-Tolerant Systems, pages 22{39, Uppsala, Sweden, September
1996. Volume 1135 of Lecture Notes in Computer Science, Springer-
Verlag.

[Sho67] Joseph R. Shoen�eld. Mathematical Logic. Addison-Wesley, Reading,
MA, 1967.

[Sho78a] J. R. Shoen�eld. Axioms of Set Theory. In Jon Barwise, editor, Hand-
book of Mathematical Logic, volume 90 of Studies in Logic and the Foun-
dations of Mathematics, chapter B1, pages 321{344. North-Holland,
Amsterdam, Holland, 1978.

[Sho78b] Robert E. Shostak. An Algorithm for Reasoning about Equality. Com-
munications of the ACM, 21(7):583{585, July 1978.

162 References

[SM91] S. Shlaer and S. Mellor. Object-Oriented Systems Analysis: Modeling

the World in Data. Yourdon Press Computing Series. Prentice Hall,
Englewood Cli�s, NJ, 1991.

[SM95a] Mandayam Srivas and Steven P. Miller. Formal Veri�cation of a Com-
mercial Microprocessor. Technical Report SRI-CSL-95-4, Computer
Science Laboratory, SRI International, Menlo Park, CA, February 1995.
Also available under the title Formal Veri�cation of an Avionics Mi-

croprocessor as NASA Contractor Report 4682, July, 1995.

[SM95b] Mandayam K. Srivas and Steven P. Miller. Formal Veri�cation of the
AAMP5 Microprocessor. In Hinchey and Bowen [HB95a], chapter 7,
pages 125{180.

[Smi90] D.R. Smith. KIDS: A semiautomatic program development sys-
tem. IEEE Transactions on Software Engineering, SE-16(9):1024{1043,
1990.

[SOR93] N. Shankar, S. Owre, and J. M. Rushby. The PVS Proof Checker: A

Reference Manual. Computer Science Laboratory, SRI International,
Menlo Park, CA, February 1993. A new edition for PVS Version 2 is
expected in late 1997.

[Spi88] J. M. Spivey. Understanding Z: A Speci�cation Language and its For-

mal Semantics. Cambridge Tracts in Theoretical Computer Science 3.
Cambridge University Press, Cambridge, UK, 1988.

[SS86] Leon Sterling and Ehud Shapiro, editors. The Art of Prolog. MIT Press
Series in Logic Programming. The MIT Press, 1986.

[Sti86] M. E. Stickel. A Prolog Technology Theorem Prover. In J. H. Siekmann,
editor, 8th International Conference on Automated Deduction (CADE),
pages 573{587, Oxford, England, July 1986. Volume 230 of Lecture
Notes in Computer Science, Springer-Verlag.

[Sys92] ParcPlace Systems. Object-Oriented Methodology Course Notes. Parc-
Place Systems, Inc., Sunnyvale, CA, 1992.

[Talco] http://www-formal.stanford.edu/clt/ARS/ars-db.html. Follow the link
\Existing systems, related �elds/pages, archives,".

[Tar55] Alfred Tarski. A Lattice-Theoretical Fixpoint Theorem and its Appli-
cations. Paci�c Journal of Mathematics, 5:285{309, 1955.

[Tar76] Alfred Tarski. Introduction to Logic and to the Methodology of Deductive

Sciences. Oxford University Press, New York, NY, third edition, 1976.
First published 1941.

NASA-GB-001-97 163

[Tho84] Richmond H. Thomason. Combinations of Tense and Modality. In
Gabbay and Guenthner [GG84], chapter II.3, pages 135{165.

[Tho90] Wolfgang Thomas. Automata on In�nite Objects. In van Leeuwen
[vL90], chapter 4, pages 133{187.

[TP94] M. Tokoro and R. Pareschi, editors. 8th European Conference on Object-

Oriented Programming (ECOOP '94), volume 821 of Lecture Notes in

Computer Science, Bologna, Italy, July 1994. Springer-Verlag.

[Urq86] A. Urquhart. Many-Valued Logic. In Dov M. Gabbay and Franz
Guenthner, editors, Handbook of Philosophical Logic{Volume III: Al-

ternatives to Classical Logic, Synthese Library, pages 71{116. D. Reidel
Publishing Company, Dordrecht, Holland, 1986.

[Val90] A. Valmari. A Stubborn Attack on State Explosion. In Clarke and
Kurshan [CK90], pages 25{42.

[vB88] Johan van Benthem. Time, Logic and Computation. In J.W. de Bakker,
W.-P. de Roever, and G. Rozenberg, editors, Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency, pages
1{49, Noordwijkerhout, The Netherlands, May/June 1988. Volume 354
of Lecture Notes in Computer Science, Springer-Verlag.

[vBD83] Johan van Bentham and Kees Doets. Higher-Order Logic. In Gabbay
and Guenthner [GG83], chapter I.4, pages 275{329.

[vBJ79] L. S. van Benthem Jutting. Checking Landau's `Grundlagen' in the Au-
tomath System. Technical report, Mathematical Centre, Amsterdam,
1979. Mathematical Centre Tracts.

[VDM] http://WWW.ifad.dk/vdm/vdm.html.

[vL90] Jan van Leeuwen, editor. Handbook of Theoretical Computer Science,
volume B: Formal Models and Semantics. Elsevier and MIT press,
Amsterdam, The Netherlands, and Cambridge, MA, 1990.

[vS90] A. John van Schouwen. The A-7 Requirements Model: Re-Examination
for Real-Time Systems and an Application to Monitoring Systems.
Technical Report 90-276, Department of Computing and Information
Science, Queen's University, Kingston, Ontario, Canada, May 1990.

[vSPM93] A. John van Schouwen, David Lorge Parnas, and Jan Madey. Documen-
tation of Requirements for Computer Systems. In IEEE International

Symposium on Requirements Engineering, pages 198{207, San Diego,
CA, January 1993.

164 References

[VW86] M. Vardi and P. Wolper. An Automata-Theoretic Approach to Auto-
matic Program Veri�cation. In 1stAnnual IEEE Symposium on Logic

in Computer Science, Boston, MA, June 1986. IEEE Computer Society.

[Wan60a] H. Wang. Proving Theorems by Pattern Recognition. Communications
of the ACM, 4(3):229{243, 1960.

[Wan60b] H. Wang. Toward Mechanical Mathematics. IBM Journal of Research

and Development, 4:2{21, 1960.

[WB93] Trevor Williams and David Baughman. Exploiting Orbital E�ects for
Short-Range Extravehicular Transfers. In AAS/AIAA Space
ight Me-

chanics Meeting, Pasadena, CA, 1993. American Astronautical Society.

[WB94] Trevor Williams and David Baughman. Self-Rescue Strategies for EVA
Crewmembers Equipped with the SAFER Backpack. In Proceedings

of the Goddard Flight Mechanics/Estimation Theory Symposium, May
1994. Paper 28.

[Wes78] C. H. West. General Technique for Communications Protocol Valida-
tion. IBM Journal of Research and Development, 22(3):393{404, 1978.

[Win90] J. M. Wing. A Speci�er's Introduction to Formal Methods. IEEE

Computer, 23(9):8{24, September 1990.

[WM85] P. T. Ward and S. J. Mellor. Structured Development for Real-Time

Systems. Prentice Hall, Englewood Cli�s, NJ, 1985.

[WOLB92] Larry Wos, Ross Overbeek, Ewing Lusk, and Jim Boyle. Automated

Reasoning: Introduction and Applications. McGraw-Hill, New York,
NY, second edition, 1992. Includes a copy of the Otter theorem prover
for IBM-PCs.

[Wor92] J. B. Wordsworth. Software Development with Z. Addison-Wesley,
Wokingham, England, 1992.

[wSJGJMW93] John V. Guttag and James J. Horning with S. J. Garland, K. D. Jones,
A. Modet, and J. M. Wing. Larch: Languages and Tools for Formal

Speci�cation. Texts and Monographs in Computer Science. Springer-
Verlag, 1993.

[WZ78] C. H. West and P. Za�ropulo. Automated Validation of a Communi-
cations Protocol: the CCITT X.21 Recommendation. IBM Journal of

Research Development, 22(1):60{71, 1978.

[Yoe90] Michael Yoeli, editor. Formal Veri�cation of Hardware Design. IEEE
Computer Society, Los Alamitos, CA, 1990.

NASA-GB-001-97 165

[You95] William D. Young. Modelling and Veri�cation of a Simple Real-Time
Railroad Gate Controller. In Hinchey and Bowen [HB95a], chapter 8,
pages 181{201.

[Zav95] Pamela Zave. Classi�cation of Research E�orts in Requirements Engi-
neering. In RE [RE95], pages 214{216.

166 References

Appendix A

Glossary of Key Terms

This appendix contains an alphabetized list of the acronyms and key terms used in the
body of the Guidebook.

A.1 Acronyms

AAH: Automatic Attitude Hold
CEA: Control Electronics Assembly of the MMU
CTL: Computational Tree Logic
DCU: Display and Control Unit
DRA: Data Recorder Assembly
EMU: Extravehicular Mobility Unit
EVA: Extravehicular Activity
FOL: First-Order (Predicate) Logic
FSSR: Functional Subsystem Software Requirements
GPS: Global Positioning System
HCM: Hand Controller Module
HCU: Hand Controller Unit
HHMU: Hand Held Maneuvering Unit
IRU: Inertial Reference Unit
LCD: Liquid Crystal Display
LED: Light Emitting Diode
LTL: Linear Temporal Logic
MIR: Mode Identi�cation and Reconstruction
MMU: Manned Maneuvering Unit
OMT: Object Modeling Technique
PLSS: Primary Life Support Subsystem
PSA: Power Supply Assembly
PVS: Prototype Veri�cation System
RHC: Rotational Hand Control of the MMU

167

168 Appendix A

ROT: Rotational
SAFER: Simpli�ed Aid for EVA
SCR: Software Cost Reduction (Methodology)
TCC: Type Correctness Conditions
THC: Translational Hand Control of the MMU
TRAN: Translational
VDA: Valve Drive Assemblies

A.2 Terms
1

assurance: Those activities that demonstrate the conformance of a product or
process to a speci�ed criterion such as a functional requirement. Quality assurance

refers to those activities that focus particularly on conformance to standards or
procedures [NASA-92].

axiom: A statement or well-formed formula that is stipulated or assumed rather than
proved to be true through the application of rules of inference. The axioms and the
rules of inference together provide a basis for proving all other theorems. Axioms
are typically identi�ed as logical or nonlogical . The latter deal with speci�c domain
information, while the former characterize logical properties. A given formal system
may have several (di�erent) axiomatizations.

formal logic: The study of deductive argument that focuses on the form, rather than
the content of the argument. The central concept of formal logic is that of a valid

argument: if the premises are true, the conclusion must also be true.

formal methods: A varied set of techniques from formal logic and discrete mathemat-
ics used in the design, speci�cation, and veri�cation of computer systems and software.

function: A rule f that assigns to every element x of a set X, a unique element y of a
set Y , written y = f(x). X is called the domain and Y the range (or codomain). For
example, the area of a circle, y, is a function of the radius, x, written y = f(x) = �r2.
A function with domain X and range Y is also called a mapping or map from X to Y ,
written f : X ! Y . A function that maps every element of its domain to an element
in its range is said to be total. A function that maps some elements of its domain to
elements of its range, leaving others unde�ned, is said to be partial.

functional: A function that takes a set of functions as domain and a set of functions
as range. For example, the di�erential operator d=dx is a functional of di�erentiable

1Material from [DN89] has been used in some of the following de�nitions.

NASA-GB-001-97 169

functions f(x).

model: (1) In logic, an interpretation, I, of a set of well-formed formulas of a formal
language such that each member of the set is true in I. (2) A system of de�nitions,
assumptions, and equations set up to represent and discuss physical phenomena and
systems.

model theory: The study of the interpretations (models) of formal systems, especially
the notions of logical consequence, validity, completeness, and soundness.

mu-Calculus: The �-calculus is a quanti�ed Boolean logic with least and greatest
�xed-point operators.

parsing: A form of analysis that detects syntactic inconsistencies and anomalies,
including misspelled keywords, missing delimiters, and unbalanced brackets or paren-
theses.

power set: The power set of a set A is the set of all sets included in A. If a set has
n elements, its power set will have 2n elements. For example, if a set S = fa; bg, then
the power set of S, P(S), is the set f;; fag; fbg; fa; bgg.

proof: A chain of reasoning using rules of inference and a set of axioms that leads to
a conclusion.

proof theory: The study of proofs and provability in formal languages, including no-
tions of deducibility, independence, simple completeness, and, particularly, consistency.

quanti�er: A logical operator that binds a variable in a logical formula and is used to
indicate the quantity of a proposition, for example, the univeral quanti�er 8 (read \for
all"), and the existential quanti�er 9 (read \there exists").

requirements: The set of conditions or essential, necessary, or desired capabilities
that must be met by a system or system component to satisfy a contract, standard, or
other formally implied document or description.

rule of inference: A rule in logic that de�nes the reasoning that determines when
a conclusion may be drawn from a set of premises. In a formal system, the rules of
inference should guarantee that if the premises are true, then the conclusion is also true.

speci�cation (formal): A characterization of a planned or existing system expressed
in a formal language.

170 Appendix A

testing: Process of exercising or evaluating software by manual or automated means
to demonstrate that it satis�es speci�ed requirements or to identify di�erences between
expected and actual results [NASA-92].

trace: A function from time to a given type of value, where time represents, for
example, a frame, cycle, or iteration count.

typechecking: A form of analysis that detects semantic inconsistencies and anomalies,
including undeclared names and ambiguous types.

validation: The process by which a delivered system is demonstrated to satisfy its re-
quirements by testing it in execution. Informally, demonstrating that the requirements
are right.

veri�cation: The process of determining whether each level of a speci�cation, and the
�nal system itself, fully and exclusively implements the requirements of its superior spec-
i�cation. Informally, demonstrating that a system is built according to its requirements.

Appendix B

Further Reading

This appendix contains suggestions for further reading, arranged by topic.

B.1 Technical Background: Mathematical Logic

� Peter B. Andrews. An Introduction to Logic and Type Theory: To Truth through

Proof. Academic Press, New York, NY, 1986.

� Jon Barwise. \An Introduction to First-order Logic." In Jon Barwise, editor,
Handbook of Mathematical Logic, Volume 90 of Studies in Logic and the Foun-

dations of Mathematics, Chapter A1, pages 5{46. North-Holland, Amsterdam,
Holland, 1978.

� H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

� David Gries and Fred B. Schneider. A Logical Approach to Discrete Math. Texts
and Monographs in Computer Science. Springer-Verlag, New York, NY, 1993.

� Dov M. Gabbay and Franz Guenthner, editors. Handbook of Philosophical Logic{
Volume I: Elements of Classical Logic, volume 164 of Synthese Library. D. Reidel
Publishing Company, Dordrecht, Holland, 1983.

� Dov M. Gabbay and Franz Guenthner, editors. Handbook of Philosophical Logic{
Volume II: Extensions of Classical Logic, volume 165 of Synthese Library. D.
Reidel Publishing Company, Dordrecht, Holland, 1984.

� Elliott Mendelson. Introduction to Mathematical Logic. D. Van Nostrand Com-
pany, The University Series in Undergraduate Mathematics, 1964.

� Mark Ryan and Martin Sadler. \Valuation Systems and Consequence Relations."
In S. Abramsky, Dov M. Gabbay, and T. S. E. Maibaum, editors, Handbook
of Logic in Computer Science; Volume 1 Background: Mathematical Structures,
pages 1{78. Oxford Science Publications, Oxford, UK, 1992.

171

172 Appendix B

� Joseph R. Shoen�eld. Mathematical Logic. Addison-Wesley, Reading, MA, 1967.

� Johan van Bentham and Kees Doets. Higher-order Logic. In Dov M. Gabbay and
Franz Guenthner, editors. Handbook of Philosophical Logic{Volume I: Elements

of Classical Logic, Chapter I.4. Synthese Library, D. Reidel, 1983, pages 275{329.

B.2 Speci�cation

� J. P. Bowen. Formal Speci�cation and Documentation Using Z. International
Thomson Computer Press, 1996.

� Dines Bj�rner and Cli� B. Jones. Formal Speci�cation and Software Development.
Prentice Hall International Series in Computer Science, 1986.

� John V. Guttag and James J. Horning with S. J. Garland, K. D. Jones, A. Modet,
and J. M. Wing. Larch: Languages and Tools for Formal Speci�cation. Texts and
Monographs in Computer Science. Springer-Verlag, 1993.

� Ian Hayes, editor. Speci�cation Case Studies. Prentice Hall International Ltd.,
1987.

� Michael Hinchey and S. A. Jarvis. Concurrent Systems: Formal Development in
CSP. McGraw-Hill International Series in Software Engineering, 1995.

� Cli� B. Jones. Systematic Software Development Using VDM. Prentice Hall In-
ternational Series in Computer Science, second edition, 1990.

� Kevin Lano. The B Language and Method: A Guide to Practical Formal Devel-

opment. Springer-Verlag FACIT Series, May 1996.

� J. M. Spivey. Understanding Z: A Speci�cation Language and its Formal Seman-

tics. Cambridge Tracts in Theoretical Computer Science 3. Cambridge University
Press, 1988.

B.3 Model Checking

� Edmund Clarke and Robert Kurshan. \Computer-Aided Veri�cation." IEEE

Spectrum, Volume 33, No. 6, June 1996, pages 61-67.

� G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall
Software Series, 1991.

� Robert P. Kurshan. Computer-Aided Veri�cation of Coordinating Processes.
Princeton Series in Computer Science. Princeton University Press, 1994.

� Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

NASA-GB-001-97 173

B.4 Theorem Proving

� R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.

� R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press,
1988.

� Alan Bundy. The Computer Modelling of Mathematical Reasoning. Academic
Press, 1983.

� M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem

Proving Environment for Higher-Order Logic. Cambridge University Press, 1993.

� Lawrence Paulson. \Designing a Theorem Prover." In S. Abramsky and Dov M.
Gabbay and T. S. E. Maibaum, Handbook of Logic in Computer Science; Volume

2 Background: Computational Structures. Oxford Science Publications, Oxford,
UK, 1992, pages 415{475.

� Larry Wos and Ross Overbeek and Ewing Lusk and Jim Boyle. Automated Rea-

soning: Introduction and Applications, McGraw-Hill, 1992.

B.5 Models of Computation

� C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall Interna-
tional Series in Computer Science, 1985.

� K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

� E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

� D. Gries. The Science of Programming. Springer-Verlag, 1981.

� R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

� Zohar Manna and Richard Waldinger. The Deductive Foundations of Computer

Programming. Addison-Wesley, 1993.

B.6 Applications and Overviews

� Edmund Clarke and Jeannette Wing. Formal Methods: State of the Art and Future

Directions. Report of the ACM Workshop on Strategic Directions in Computing
Research, Formal Methods Subgroup. Available as Carnegie Mellon University
Technical Report CMU-CS-96-178, August 1996.

174 Appendix B

� Dan Craigen, Susan Gerhart, and Ted Ralston. An International Survey of In-

dustrial Applications of Formal Methods; Volume 1: Purpose, Approach, Analysis

and Conclusions; Volume 2: Case Studies. National Institute of Standards and
Technology, NIST GCR 93/626, 1993.

� C. Neville Dean and Michael Hinchey, eds. Teaching and Learning Formal Meth-

ods. Academic Press, International Series in Formal Methods, 1996.

� M. G. Hinchey and J. P. Bowen, editors. Applications of Formal Methods. Prentice
Hall International Series in Computer Science, 1995.

� IEEE Computer, Special Issue on Formal Methods. Volume 23, Number 9,
September, 1990.

� IEEE Software, Special Issue on Formal Methods. Volume 7, Number 5, Septem-
ber, 1990.

� IEEE Transactions on Software Engineering, Special Issue on Formal Methods in
Software Engineering. Volume 16, Number 9, September, 1990.

� H. Saiedian, ed. \An Invitation to Formal Methods." IEEE Computer, Volume
29, Number 4, April 1996, pages 16-30.

B.7 Tutorials

� Ricky W. Butler. An Introduction to Requirements Capture Using PVS: Speci�-

cation of a Simple Autopilot. NASA Langley Research Center, NASA Technical
Memorandum 110255, 1996.

� J. Crow and S. Owre and J. Rushby and N. Shankar and M. Srivas. \A Tu-
torial Introduction to PVS." Presented at IEEE Computer Society Workshop
on Industrial-Strength Formal Speci�cation Techniques (WIFT'95), Boca Raton,
Florida, 1995.

� Stuart R. Faulk. Software Requirements: A Tutorial. Naval Research Laboratory.
NRL Memorandum Report No. 5546-95-7775, November, 1995.

� Chris George. \The RAISE Speci�cation Language: A Tutorial," In VDM '91:

Formal Software Development Methods, S. Prehn and W. J. Toetenel, editors.
Springer-Verlag Lecture Notes in Computer Science, Volume 552, October 1991,
pages 238{319.

� John Rushby and David W. J. Stringer-Calvert. A Less Elementary Tutorial

for the PVS Speci�cation and Veri�cation System, SRI, International Technical
Report No. SRI-CSL-95-10, July 1996.

NASA-GB-001-97 175

� V. Stavridou and A. Boothroyd and P. Bradley and B. Dutertre and L. Shackleton
and R. Smith. \Formal Methods and Safety Critical Systems in Practice." In High
Integrity Systems, Volume 1, No. 5, 1996, pages 423{445.

� Debora Weber-Wul�. \Proof Movie|A Proof with the Boyer-Moore Prover." In
Formal Aspects of Computing, Volume 5, No. 2, 1993, pages 121{151.

176 Appendix B

Appendix C

Extended Example: Simpli�ed

Aid for EVA Rescue (SAFER)

The example presented in this appendix is based on NASA's Simpli�ed Aid for EVA
Rescue (SAFER). SAFER is a new system for free-
oating astronaut propulsion that is
intended for use on Space Shuttle missions, as well as during Space Station construction
and operation. Although the speci�cation attempts to capture as much as possible
of the actual SAFER design, certain pragmatically motivated deviations have been
unavoidable. Nevertheless, the SAFER example contains elements typical of many
space vehicles and the computerized systems needed to control them.

C.1 Overview of SAFER

SAFER is a small, self-contained, backpack propulsion system enabling free-
ying mo-
bility for a crewmember engaged in extravehicular activity (EVA) that has evolved as
a streamlined version of NASA's earlier Manned Maneuvering Unit (MMU) [MMU83].
SAFER is a single-string system designed for contingency use only. SAFER o�ers suf-
�cient propellant and control authority to stabilize and return a tumbling or separated
crewmember, but lacks the propellant capacity and systems redundancy provided with
the MMU. Nevertheless, SAFER and the MMU share an overall system concept, as well
as general subsystem features. The description that follows draws heavily on the SAFER
Operations Manual [SAFER94a] and on the SAFER Flight Text Project development
speci�cation [SAFER94b], excerpts of which have been included here as appropriate.

C.1.1 History, Mission Context, and System Description

SAFER is designed as a self-rescue device for a separated EVA crewmember in situations
where the Shuttle Orbiter is unavailable to e�ect a rescue. Typical situations include
whenever the Orbiter is docked to a large payload or structure, such as the Russian Mir
Space Station or the International Space Station Alpha. A SAFER device would be worn

177

178 Appendix C

by every crewmember during these types of EVAs. As noted in [WB94], a crewmember
engaged in EVA, who becomes separated from an Orbiter or a space station, has three
basic options: grappling the Orbiter or station immediately using a \shepherd's crook"
device, rescue by a second crewmember
ying an MMU (Manned Maneuvering Unit)1

or self-rescue using a propulsive system. The �rst option is not realistic in all situations;
it assumes a near-optimal response by a tumbling astronaut. The second option is also
unrealistic, in this case because it assumes constant availability of both the MMU and
the second crewmember during all EVA, since reaction time is critical to successful
rendezvous with a drifting crewmember. The third option, a propulsive self-rescue
system, is the most viable and therefore the one ultimately selected.

As described in [WB93], the simplest self-rescue system is the Hand-Held Ma-
neuvering Unit (HHMU) or \gas gun"
own on Gemini and Skylab, and the \Crew
Propulsive Device," a redesign of the Gemini HHMU
own on the STS-49. Tests on
these units indicated that the HHMUs were adequate for short translations, but re-
quired the crewmember to visually determine and e�ectively nullify tumble rates about
all three axes { a challenging proposition even with good visual cues. As a result, rec-
ommendations based on the STS-49 tests included an automatic detumble capability
for all self-rescue devices.

While the HHMU lacked automatic detumble and other capabilities necessary for a
general-purpose self-rescue system, the MMU was too well-endowed. The MMU per-
formed the �rst self-propelled untethered EVA during the STS-41B mission in 1984,
participated in the Solar Maximum Mission spacecraft repair on a subsequent 1984
shuttle
ight, and was used to capture the Palapa B-2 and the Westar-VI communi-
cations satellites on yet another shuttle
ight that same year [WB94, p. 4]. However,
the MMU's versatility, redundancy, and physical bulk made it unsuited as a general-
purpose self-rescue device. Nevertheless, so many MMU features have been incorpo-
rated into SAFER (ranging from the hand controller grip design to the gaseous-nitrogen
(GN2) recharge-port quick-disconnect and the GN2pressure regulator/relief valve), that
SAFER has been described as a \mimimized derivative" of the MMU [WB94, p. 2].

SAFER �ts around the Extravehicular Mobility Unit (EMU) primary life support
subsystem (PLSS) backpack without limiting suit mobility (Figure C.1). SAFER uses
24 GN2thrusters to achieve six degree-of-freedom maneuvering control. A single hand
controller attached to the EMU display and control module is used to control SAFER
operations. Propulsion is available either on demand, that is, in response to hand con-
troller inputs, or through an automatic attitude hold (AAH) capability. Hand controller
inputs can command either translations or rotations, while attitude hold is designed to
bring and keep rotation rates close to zero. SAFER's propulsion system can be recharged
during an EVA in the Orbiter payload bay. The SAFER unit weighs approximately 85
pounds and folds for launch, landing, and on-orbit stowage inside the Orbiter airlock.

1Or, similarly, by a robotic-controlled MMU. However, such a system has apparently not yet been

developed and is not likely to be available in the near-term.

NASA-GB-001-97 179

C.1.2 Principal Hardware Components

The SAFER
ight unit consists of three assemblies: the backpack propulsionmodule, the
hand controller module (HCM), and a replaceable battery pack. SAFER also requires
several items of
ight support equipment during a Shuttle mission. For the purpose of
this discussion, only the propulsion and hand controller modules need be included.

C.1.2.1 Backpack Propulsion Module

The propulsionmodule is the primary assembly of the SAFER system, attaching directly
to the EMU PLSS backpack. Figure C.2 shows the structures and mechanisms contained
within the propulsion module. Four subassemblies are identi�ed: main frame structure,
left and right tower assemblies, and the avionics box. A lightweight, aluminum-alloy
frame holds SAFER components, while external surfaces are formed by an outer alu-
minum skin. With the exception of the upper thrusters mounted to the tower assemblies,
all propulsion subsystem components are housed in the main frame.

The tower assemblies have hinge joints that allow them to be folded for stowage.
Towers are unfolded and attached to PLSS interfaces in preparation for an EVA. Latches
on the towers hold SAFER �rmly to the PLSS. Hinge joints accommodate GN2 tubing,
electrical power, and signal routing to the upper thrusters.

Housed in the avionics box are the control electronics assembly, inertial reference
unit, data recorder assembly, and power supply assembly. The avionics box is attached
to the bottom of the main frame, as depicted in Figure C.2. Data and power connectors
provide an interface to the main frame. Connectors are also provided for the HCM
umbilical and ground servicing equipment.

Within the main frame, high-pressure GN2 is stored in four cylindrical stainless-steel
tanks. Pressure and temperature sensors are placed directly adjacent to the tanks and
these parameters are displayed to the SAFER crewmember on the HCM. Other com-
ponents attached to the main GN2 line are a manual isolation valve, a quick-disconnect
recharge port, an integrated pressure regulator and relief valve, and downstream pres-
sure and temperature sensors.

After passing through the regulator/relief valve, GN2 is routed to four thruster man-
ifolds, each containing six electric-solenoid thruster valves. A total of 24 thrusters is pro-
vided, with four thrusters pointing in each of the �X, �Y, and �Z directions. Thruster
valves open when commanded by the avionics subsystem. When a valve opens, GN2

is released and expanded through the thruster's conical nozzle to provide a propulsive
force. The avionics subsystem can command as many as four thrusters at a time to
provide motion with six degrees of freedom (�X, �Y, �Z, �roll, �pitch, and �yaw).
Figure C.3 illustrates the thruster layout, designations, and directions of force.

C.1.2.2 Hand Controller Module (HCM)

A SAFER crewmember controls the
ight unit and monitors its status by means of the
hand controller module (HCM). Two distinct units are found in the HCM: a display

180 Appendix C

and control unit, and a hand controller unit. Both units are mounted together, as shown
in Figure C.4, with an internal connector joining the two units electrically.

Various displays and switches are located on the display and control unit and po-
sitioned so that they can be viewed from any head position within the EMU helmet.
These displays and switches include

1. Liquid crystal display. A 16-character, backlit LCD displays prompts, status
information, and fault messages to the crewmember.

2. Thruster cue light. A red LED lights whenever a thruster-on condition is
detected by the control software. This light is labeled \THR."

3. Automatic attitude hold light. A green LED labeled \AAH" lights whenever
attitude hold is enabled for one or more rotational axes.

4. Power/test switch. A three-position toggle switch labeled \PWR" is used to
power on the
ight unit and initiate self-test functions. The three positions are
\OFF," \ON," and \TST."

5. Display proceed switch. A three-position, momentary-contact toggle switch is
used to control message displays on the LCD. This switch, which is labeled \DISP"
on the HCM, is normally in the center null position. When pushed up/down, the
switch causes the LCD to display the previous/next parameter or message.

6. Control mode switch. A two-position toggle switch is used to con�gure the
hand controller for either rotational or translational commands. This switch is
labeled \MODE," with its two positions labeled \ROT" and \TRAN."

The hand controller grip is compatible with an EMU glove. It is mounted on the
right side of the HCM with an integral push-button switch for initiating and terminating
AAH mode. A four-axis mechanism having three rotary axes and one transverse axis is
the heart of the hand controller. A command is generated by moving the grip from the
center null position to mechanical hardstops on the hand controller axes. Commands
are terminated by deliberately returning the grip to its center position or by releasing
the grip so that it automatically springs back to the center.

As shown in Figure C.5, with the control mode switch in the TRAN position, �X,
�Y, �Z, and �pitch commands are available. �X commands are generated by rotating
the grip forward or backward, �Y commands by pulling or pushing the grip right or left,
and �Z commands by rotating the grip down or up. �pitch commands are generated
by twisting the grip up or down about the hand controller transverse axis.

As shown in Figure C.6, with the control mode switch in the ROT position, �roll,
�pitch, �yaw, and �X commands are available. �roll commands are generated by
rotating the grip down or up (same motion as the �Z commands in TRAN mode).
�yaw commands are generated by pulling or pushing the grip right or left (same motion

NASA-GB-001-97 181

as the �Y commands in TRAN mode). The �pitch and �X commands are generated
as in TRAN mode, thus making them available in both TRAN and ROT modes.

An electrical umbilical connects the HCM to the propulsion module, attaching to a
connector on the avionics box. This umbilical is connected prior to launch and is not
intended to be disconnected in
ight.

C.1.2.3 Battery Pack

The battery pack, which provides power for all SAFER electrical components, connects
to the bottom of the propulsion module, as shown in Figure C.2. Two separate battery
circuits are found in the battery pack, both containing multiple stacks of 9-volt alkaline
batteries. One battery circuit powers the thruster valves, o�ering 30{57 volts to the
power supply assembly, which produces a 28-volt output for opening valves in pulses
of 4.5 milliseconds duration. Energy capacity is su�cient to open the thrusters 1200
times and thereby drain the GN2 tanks four times. The other battery circuit powers the
avionics subsystem (i.e., the remaining electrical components), producing 16{38 volts
for the power supply for a cumulative power-on time of 45 minutes. A temperature
sensor in the battery pack is used for monitoring purposes. Flight procedures allow for
battery pack changing during an EVA.

C.1.2.4 Flight Support Equipment

Besides the SAFER
ight unit, several types of
ight support equipment are needed
during SAFER operations. These items include a special plug to attach the hand
controller module to the EMU display and control module, a recharge hose for GN2 tank
recharging during an EVA, the Orbiter's GN2 system to provide GN2 via the recharge
hose, a SAFER recharge station having handrails and foot restraints to facilitate the
recharging procedure, an airlock stowage bag for storing SAFER when not in use, and
a battery transfer bag for storing extra battery packs during an EVA. None of these
support items will be considered any further in this appendix.

C.1.3 Avionics

SAFER's avionics subsystem resides mostly in the backpack module beneath the propul-
sion components. Included are the following assemblies:

1. Control Electronics Assembly (CEA). Found in the avionics box, the CEA
contains a microprocessor that takes inputs from sensors and hand controller
switches, and actuates the appropriate thruster valves. The CEA has a serial
bus interface for the HCM umbilical as well as an interface for ground support
equipment.

2. Inertial Reference Unit (IRU). Central to the attitude hold function, the
IRU senses angular rates and linear accelerations. Three quartz rate sensors, rate

182 Appendix C

noise �lters, and associated rate measurement electronics provide angular rate
sensing up to �30 degrees per second. A separate sensor exists for each angular
axis (roll, pitch, yaw). In addition, a temperature sensor is paired with each of
the three rate sensors, enabling the avionics software to reduce rate sensor error
caused by temperature changes. An accelerometer senses linear acceleration up
to �1 g along each linear axis (X, Y, Z). These accelerations are recorded by the
data recorder assembly for post-
ight analysis.

3. Data Recorder Assembly (DRA). SAFER
ight performance data is collected
by the DRA. Saved parameters include data from rate sensors, accelerometers,
pressure and temperature transducers, and battery voltage sensors. The DRA
also records hand controller and AAH commands and thruster �rings. Data may
be recorded at one of three rates: 1 Hz, 50 Hz, or 250 Hz. A suitable rate is chosen
automatically based on which control mode is in use.

4. Valve Drive Assemblies (VDAs). Four valve drive assemblies are used to
actuate the GN2 thrusters. A VDA is located with each cluster of six thrusters
(in each tower and on the left and right sides of the propulsionmodule main frame).
VDAs accept �ring commands from the CEA and apply voltages to the selected
valves. VDAs also sense current
ow through the thruster solenoids, providing a
discrete signal to the CEA acknowledging thruster �ring.

5. Power Supply Assembly (PSA). Regulated electrical power for all SAFER
electrical components is produced by the PSA. Two battery circuits provide input
power, and the PSA serves as a single-point ground for all digital and analog signal
returns.

6. Instrumentation Electronics. A variety of sensors is included in the SAFER
instrumentation electronics. A subset of the sensed parameters is available for
display by the crewmember. Table C.1 lists all the SAFER sensors.

C.1.4 System Software

The avionics software is responsible for controlling the SAFER unit in response to
crewmember commands. Two principal subsystems comprise the system software: the
maneuvering control subsystem and the fault detection subsystem. Maneuvering control
includes both commanded accelerations and automatic attitude hold actions. Fault
detection supports in-
ight operation, pre-EVA checkout, and ground checkout.

C.1.4.1 Software Interfaces

Digital interfaces to SAFER components enable the CEA's microprocessor to achieve
control. Four classes of inputs are monitored and accepted by the avionics software:

NASA-GB-001-97 183

Parameter measured Sensor type Displayed?

GN2 tank pressure Pressure Y
GN2 tank temperature Temperature Y
GN2 regulator pressure Pressure Y
GN2 regulator temperature Temperature Y
Roll rate Angular rate Y
Pitch rate Angular rate Y
Yaw rate Angular rate Y
Electronics battery volts Voltage Y
Valve drive battery volts Voltage Y
Battery temperature Temperature Y

X acceleration Linear acceleration N
Y acceleration Linear acceleration N
Z acceleration Linear acceleration N
Roll rate sensor temperature Temperature N
Pitch rate sensor temperature Temperature N
Yaw rate sensor temperature Temperature N

Table C.1: SAFER sensor complement.

1. Hand controller switches. Indications of switch operation cover both toggle
switches and those embedded within the hand grip mechanism.

2. Avionics transducers. Sensor inputs are converted from analog to digital form
before software sampling.

3. Thruster-on discrete. This input is a binary indication of at least one thruster
valve being open.

4. Serial line. Ground checkout operations send data through this input.

Similarly, four classes of outputs are generated by the avionics software:

1. Hand controller displays. Both LEDs and a 16-character LCD display are
included to present status to the crewmember.

2. Thruster system. Digital outputs are delivered to the valve drive assemblies to
actuate individual thruster valves.

3. Data recorder system. Selected data items are recorded for post-
ight analysis
on the ground.

4. Serial line. Ground checkout operations receive data through this output.

184 Appendix C

C.1.4.2 Maneuvering Control Subsystem

Figure C.7 breaks down the SAFER software architecture in terms of its primary mod-
ules. Those modules comprising the maneuvering control subsystem collectively realize
SAFER's six degree-of-freedom propulsion capability. Both rotational and translational
accelerations will be commanded by the software. Rotations resulting from the AAH
function are invoked automatically by the software in response to rotation rates sensed
by the inertial reference unit. Special cases result from the interaction of the AAH
function and explicitly commanded accelerations.

Translation commands from the crewmember are prioritized so that only one trans-
lational axis receives acceleration, with the priority order being X, Y, and then Z.
Whenever possible, acceleration is provided as long as a hand controller or AAH com-
mand is present. If both translation and rotation commands are present simultaneously,
rotation takes priority and translations will be suppressed. Con
icting input commands
result in no output to the thrusters.

The SAFER crewmember can initiate AAH at any time by depressing or \clicking"
the pushbutton on the hand controller grip. Whenever AAH is active in any axis the
green LED on the HCM illuminates. When the button is double clicked (two clicks
within a 0.5 second interval), AAH is disabled for all three rotational axes. If AAH
is active, and the crewmember issues a rotational acceleration command about any
axis, AAH is immediately disabled on that axis. When this occurs, the remaining axes
remain in AAH. On the other hand, if AAH is initiated simultaneously with a rotational
command from the hand controller, the rotational command will be ignored and AAH
will become active in that axis. This feature is necessary so that a failed-on HCM
rotational command cannot permanently disable AAH on the a�ected axis.

AAH implements an automatic rotational deceleration su�cient to reduce axis rates
to near-zero levels. Continuous thruster �rings are commanded to reduce rotation about
an axis whenever its rate is sensed to be above 0.2 degree per second. Once the rates
have fallen below 0.3 degree per second, thrusters are �red only as needed to maintain
attitude within approximately �5 degrees. Thrusters are not �red when attitude is
within a �2 degree deadband.

Rate sensors, rate noise �lters, and associated rate measurement electronics exhibit
signi�cant o�set errors, which are largely a function of rate sensor temperature. O�set
reduction is used to minimize the negative e�ects of rate o�set errors. Temperature
measurements are periodically sampled and net o�set errors estimated. Such estimates
are subtracted from the noise �lter rate measurements to minimize rate o�set errors.
Net o�set errors are independent for each axis, reaching an average of 0.2 degree per
second and resulting in an average drift of the same magnitude.

Acceleration commands from the hand controller and from the AAH function are
combined to create a single acceleration command. Thruster select logic is provided to
choose suitable thruster �rings to achieve the commanded acceleration. Thruster selec-
tion results in on-o� commands for each thruster, with a maximum of four thrusters
turned on simultaneously. Thruster arrangement and designations are shown in Fig-

NASA-GB-001-97 185

ure C.3, while Tables C.2 and C.3 specify the selection logic. These tables are speci�ed
in terms of three possible command values for each axis: negative thrust, positive thrust,
or no thrust at all.

C.1.4.3 Fault Detection Subsystem

The fault detection subsystem performs four testing functions: a self test, an activation
test, a monitoring function, and a ground checkout function. The fault detection sub-
system also manages the display interface, performing the computation of parameters
and construction of messages for the HCM LCD.

The self test provides an overall functional test of the SAFER
ight unit without
using any propellant or external equipment. To carry out the test, the crewmember is
led through a checklist of prompts displayed on the HCM LCD. If a particular test is
unsuccessful, a failure message is displayed. The following tests are performed during
self test:

1. Thruster test

2. Hand controller controls and display test

3. Rate sensor function test

The activation test checks the functionality of the SAFER
ight unit in an opera-
tional mode, being invoked to check the function of the pressure regulator. A minimal
amount of propellant is used and no external equipment is required. The test con-
sists of commanding 20 millisecond thruster pulses in translational and rotational axis
directions, with opposing thrusters �red as well so no net acceleration results.

A continuous fault check of the SAFER subsystems is performed by the monitoring
function, comprising the following tests:

1. Leak monitoring

2. Battery voltage checks

3. Tank pressure and temperature checks

4. Regulator pressure and temperature checks

5. Battery pack temperature check

Status information resulting from continuous monitoring is displayed on the HCM LCD
during SAFER
ight. The following items are displayed in order:

1. Default display, showing GN2 and power percent remaining

2. Pressure and temperature

3. Rotation rate

186 Appendix C

X Pitch Yaw Always turned on On if no roll command

� � � B4 B2 B3
� � B3 B4
� � + B3 B1 B4

� � B2 B4
� B1 B4 B2 B3
� + B1 B3

� + � B2 B1 B4
� + B1 B2
� + + B1 B2 B3

� � B4 F1
� B4 F2
� + B3 F2

� B2 F1

+ B3 F4

+ � B2 F3
+ B1 F3
+ + B1 F4

+ � � F1 F2 F3
+ � F1 F2
+ � + F2 F1 F4

+ � F1 F3
+ F2 F3 F1 F4
+ + F2 F4

+ + � F3 F1 F4
+ + F3 F4
+ + + F4 F2 F3

Table C.2: Thruster select logic for X, pitch, and yaw commands.

NASA-GB-001-97 187

Y Z Roll Always turned on On if no pitch or yaw

� � � NA
� � NA
� � + NA

� � L1R L1F L3F
� L1R L3R L1F L3F
� + L3R L1F L3F

� + � NA
� + NA
� + + NA

� � U3R U3F U4F
� U3R U4R U3F U4F
� + U4R U3F U4F

� L1R R4R

+ R2R L3R

+ � D2R D1F D2F
+ D1R D2R D1F D2F
+ + D1R D1F D2F

+ � � NA
+ � NA
+ � + NA

+ � R4R R2F R4F
+ R2R R4R R2F R4F
+ + R2R R2F R4F

+ + � NA
+ + NA
+ + + NA

Table C.3: Thruster select logic for Y, Z, and roll commands.

188 Appendix C

4. Angular displacement

5. Battery voltage

6. High rate recorder status

7. Message display (error queue)

The fault detection system also provides for ground checkout of the SAFER
ight
unit. This function processes commands for data requests or avionics tests from ground
support equipment connected to the CEA's ground servicing serial port.

C.2 SAFER EVA Flight Operation Requirements

The full SAFER system has requirements that cover
ight operations as well as support
procedures such as pre-EVA checkout, propellant recharging, and battery pack changing.
Our SAFER example focuses on a subset of the full requirements, namely, those covering

ight operations during an EVA. Furthermore, several requirements are incorporated in
modi�ed form to better suit the purposes of the example. The most signi�cant change
is that the controller samples switches and sensors on every frame rather than accepting
change noti�cations via a serial line interface. This leads to the conceptually simpler
architecture of a pure sampled-data control system.

C.2.1 Hand Controller Module (HCM)

The HCM provides the controls and displays for the SAFER crewmember to operate
SAFER and to monitor status.

(1) The HCM shall comprise two units, the Hand Controller Unit (HCU) and the
Display and Control Unit (DCU).

(2) The HCM shall provide the controls and displays for the SAFER crewmember to
operate SAFER and to monitor status.

C.2.1.1 Display and Control Unit (DCU)

The DCU provides displays to the crew and switches for crew commands to power the
SAFER, to select modes, and to select displays.

(3) The DCU shall provide a red LED and shall illuminate it whenever an electrical
on-command is applied to any one of the SAFER thrusters.

(4) The DCU shall provide a green LED and shall illuminate it whenever automatic
attitude hold (AAH) is enabled for one or more SAFER rotational axes.

(5) The DCU shall provide a 16-character, backlit liquid crystal display (LCD).

NASA-GB-001-97 189

(6) The DCU shall display SAFER instructions and status information to the SAFER
crewmember on the LCD.

(7) The DCU shall provide a three-position toggle switch to power the SAFER unit
on and to control the SAFER test functions.

(8) The power toggle switch shall be oriented towards the crewmember for \TST," in
the center position for \ON," and away for \OFF."

(9) The DCU shall provide a three-position, momentary toggle switch to control the
LCD display.

(10) The display toggle switch shall remain in the center position when not being used
and shall be oriented so that positioning the switch towards or away from the
crewmember will control the LCD menu selection.

(11) The DCU shall provide a two-position toggle switch to be used to direct hand
controller commands for either full rotation or full translation control mode.

(12) The mode select toggle switch shall be positioned to the crewmember's left for the
Rotation Mode and to the crewmember's right for the Translation Mode.

C.2.1.2 Hand Controller Unit (HCU)

The HCU provides those functions associated with the hand controller and the auto-
matic attitude hold (AAH) pushbutton switch.

(13) The HCU shall provide a four-axis hand controller having three rotary axes and
one transverse axis, operated by a side-mounted hand grip as depicted in Fig-
ure C.4.

(14) The HCU shall indicate primary control motions when the grip is de
ected from
the center or null position to mechanical hard-stops.

(15) The grip de
ections shall result in six degree-of-freedom commands related to
control axes as depicted in Figures C.5 and C.6.

(16) The HCU shall terminate commands when the grip is returned to the null position.

(17) The HCU shall provide a pushbutton switch to activate and deactivate AAH.

(18) The pushbutton switch shall activate AAH when depressed a single time.

(19) The pushbutton switch shall deactivate AAH when pushed twice within 0.5 second.

190 Appendix C

C.2.2 Propulsion Subsystem

SAFER thrusters are actuated by the control electronics assembly (CEA) using the
valve drive assemblies (VDAs).

(20) The propulsion subsystem shall provide 24 gaseous nitrogen (GN2) thrusters ar-
ranged as shown in Figure C.3.

(21) The VDAs shall accept thruster �ring commands from the CEA and apply appro-
priate voltages to the selected thrusters.

(22) The VDAs shall have the capability of sensing current
ow through the thruster
solenoids and providing discrete signals to the CEA indicating such an event.

(23) The propulsion subsystem shall provide two transducers to monitor tank pressure
and regulator outlet pressure.

(24) The propulsion subsystem shall provide two temperature sensors to measure tank
temperature and regulator outlet temperature.

C.2.3 Avionics Assemblies

The avionics subsystem includes several assemblies housed within the backpack propul-
sion module, each having a digital interface to the CEA.

C.2.3.1 Inertial Reference Unit (IRU)

(25) The IRU shall provide angular rate sensors and associated electronics to measure
rotation rates in each angular axis (roll, pitch, yaw).

(26) The IRU shall provide a temperature sensor for each angular rate sensor to allow
temperature-based compensation.

(27) The IRU shall provide accelerometers to measure linear accelerations in each trans-
lation axis (X, Y, Z).

C.2.3.2 Power Supply Assembly (PSA)

(28) The power supply shall provide a voltage sensor to measure the valve drive battery
voltage.

(29) The power supply shall provide a voltage sensor to measure the electronics battery
voltage.

(30) The power supply shall provide a temperature sensor to measure battery pack
temperature.

NASA-GB-001-97 191

C.2.3.3 Data Recorder Assembly (DRA)

(31) The DRA shall accept performance data and system parameters from the CEA
for storage and post-
ight analysis.

(32) The DRA shall write formatted data on nonvolatile memory devices.

C.2.4 Avionics Software

Executing on a microprocessor within the control electronics assembly (CEA), the
SAFER avionics software provides the capability to control SAFER
ight maneuvers,
to check out functionality and detect faults in SAFER, and to display SAFER fault
conditions and general health and consumable status.

(33) The avionics software shall reference all commands and maneuvers to the coordi-
nate system de�ned in Figure C.3.

(34) The avionics software shall provide a six degree-of-freedom maneuvering control
capability in response to crewmember-initiated commands from the hand con-
troller module.

(35) The avionics software shall allow a crewmember with a single command to cause
the measured SAFER rotation rates to be reduced to less than 0.3 degree per
second in each of the three rotational axes.

(36) The avionics software shall attempt to maintain the calculated attitude within �5
degrees of the attitude at the time the measured rates were reduced to the 0.3
degree per second limit.

(37) The avionics software shall disable AAH on an axis if a crewmember rotation
command is issued for that axis while AAH is active.

(38) Any hand controller rotation command present at the time AAH is initiated shall
subsequently be ignored until a return to the o� condition is detected for that axis
or until AAH is disabled.

(39) Hand controller rotation commands shall suppress any translation commands that
are present, but AAH-generated rotation commands may coexist with translations.

(40) At most one translation command shall be acted upon, with the axis chosen in
priority order X, Y, Z.

(41) The avionics software shall provide accelerations with a maximum of four simul-
taneous thruster �ring commands.

(42) The avionics software shall select thrusters in response to integrated AAH and
crew-generated commands according to Tables C.2 and C.3.

192 Appendix C

(43) The avionics software shall provide
ight control for AAH using the IRU-measured
rotation rates and rate sensor temperatures.

(44) The avionics software shall provide fault detection for propulsion subsystem leak-
age in excess of 0.3% of GN2 mass per second while thrusters are not �ring.

(45) The avionics software shall provide limit checks for battery temperature and volt-
ages, propulsion tank pressure and temperature, and regulator pressure and tem-
perature.

C.2.5 Avionics Software Interfaces

The avionics software accepts input data from SAFER components by sampling the state
of switches and digitized sensor readings. Outputs provided by the avionics software to
SAFER components are transmitted in a device-speci�c manner.

(46) The avionics software shall accept the following data from the hand controller
module:

� + pitch, { pitch

� + X, { X

� + yaw or + Y, { yaw or { Y

� + roll or + Z, { roll or { Z

� Power/test switch

� Mode switch

� Display proceed switch

� AAH pushbutton

(47) The avionics software shall accept the following data from the propulsion subsys-
tem:

� Tank pressure and temperature

� Regulator pressure and temperature

� Thruster-on signal

(48) The avionics software shall accept the following data from the inertial reference
unit:

� Roll, pitch, and yaw rotation rates

� Roll, pitch, and yaw sensor temperatures

� X, Y, and Z linear accelerations

(49) The avionics software shall accept the following data from the power supply:

NASA-GB-001-97 193

� Valve drive battery voltage

� Electronics battery voltage

� Battery pack temperature

(50) The avionics software shall provide the following data to the HCM for display:

� Pressure, temperature, and voltage measurements

� Alert indications

� Rotation rates and displacements

� Crew prompts

� Failure messages

� Miscellaneous status messages

(51) The avionics software shall provide the following data to the valve drive assemblies
for each of the 24 thrusters:

� Thruster on/o� indications

(52) The avionics software shall provide the following data to the data recorder assem-
bly:

� IRU-sensed rotation rates

� IRU-sensed linear accelerations

� IRU rate sensor temperatures

� Angular displacements

� AAH command status

C.3 Formalization of SAFER Requirements

A PVS formalization of the SAFER system described thus far is presented below2. A
subset of the SAFER requirements has been chosen for modeling that emphasizes the
main functional requirements and omits support functions such as the ground check-
out features. Even within the
ight operation requirements some functions have been
represented only in abstract form.

2The PVS source �les for the SAFER example are available on LaRC's Web server in the directory

ftp://atb-www.larc.nasa.gov/Guidebooks/

194 Appendix C

C.3.1 PVS Language Features

Only a few PVS language features need to be understood to read the formal speci�-
cation that follows. PVS speci�cations are organized around the concept of theories.
Each theory is composed of a sequence of declarations or de�nitions of various kinds.
De�nitions from other theories are not visible unless explicitly imported.

PVS allows the usual range of scalar types to model various quantities. Numeric
types include natural numbers (nat), integers (int), rationals (rat), and reals (real).
Nonnumeric types include booleans (bool) and enumeration types (fC1, C2, ...g).
Subranges and subtyping mechanisms allow derivative types to be introduced. Uninter-
preted, nonempty type are of type TYPE+.

Structured data types or record types are used extensively in speci�cations. These
types are introduced via declarations of the following form:

record_type: TYPE = [# v1: type_1, v2: type_2, ... #]

The �rst component of this record may be accessed using the notation v1(R). A record
value constructed from individual component values may be synthesized as follows:

(# v1 := <expression 1>, v2 := <expression 2>, ... #)

Similar to records are tuples, introduced via declarations of an analogous form:

tuple_type: TYPE = [type_1, type_2, ...]

The �rst component of a tuple may be accessed using the notation proj 1(T). A tuple
value constructed from individual component values may be synthesized as follows:

(<expression 1>, <expression 2>, ...)

An important class of types in PVS is formed by the function types. A declaration
of the form:

fun_type: TYPE = [type_1 -> type_2]

de�nes a (higher-order) type whose values are functions from type 1 to type 2. Func-
tion values may be constructed using lambda expressions:

(LAMBDA x, y: <expression of x, y>)

Logical variables are introduced to serve as arguments to functions and to express
logical formulas or assertions:

x, y, z: VAR var_type

Local variable declarations also are available in most cases. Global variable declarations
apply throughout the containing theory but no further.

A named function is de�ned quite simply by the following notation:

NASA-GB-001-97 195

fn (arg_1, arg_2, ...): result_type = <expression>

Each of the variables arg i must have been declared of some type previously or given
a local type declaration. The function de�nition must be mathematically well-de�ned,
meaning its single result value is a function of the arguments and possibly some con-
stants. No \free" variables are allowed within the expression. In addition, the type of
the expression must be compatible with the result type.

Besides fully de�ning functions, it is possible to declare unspeci�ed functions using
the notation:

fn (arg_1, arg_2, ...): result_type

In this case, the function's signature is provided, but there is no de�nition. This is often
useful when developing speci�cations in a top-down fashion. Also, it may be that some
functions will never become de�ned in the speci�cation, in which case they can never
be expanded during a proof.

One type of expression in PVS is particularly useful for expressing complex functions.
This feature, known as a LET expression, allows the introduction of bound variable
names to refer to subexpressions.

LET v1 = <expression 1>, v2 = <expression 2>, ...

IN <expression involving v1, v2, ...>

Each of the variables serves as a shorthand notation used in the �nal expression. The
meaning is the same as if each of the subexpressions were substituted for its correspond-
ing variable.

Finally, PVS provides a tabular notation for expressing conditional expressions in
a naturally readable form. For example, an algebraic sign function could be de�ned as
follows:

sign(x): signs = TABLE %-------------------------%

|[x < 0 | x = 0 | x > 0]|

%-------------------------%

| -1 | 0 | 1 |

%-------------------------%

ENDTABLE

C.3.2 Overview of Formalization

The formal model uses a state machine representation of the main control function.
The controller is assumed to run continuously, executing its control algorithms once per
frame, whose duration is set at 5 milliseconds. In each frame, sensors, switches and the
hand grip controller are sampled to provide the inputs to the control functions for that
frame. Based on these inputs and the controller's state variables, actuator commands

196 Appendix C

and crew display outputs are generated, as well as the controller's state for the next
frame.

Eleven PVS theories are used to formalize the requirements:

� avionics types

� hand controller module

� propulsion module

� inertial reference unit

� automatic attitude hold

� thruster selection

� power supply

� data recorder

� self test

� HCM display

� avionics model

The full text of these theories is presented in Section C.3.3. The theories have been
typechecked by PVS, and all resulting TCCs (type correctness conditions) have been
proved.

Construction of the PVS speci�cations proceeded in a mostly top-down manner
initially, but once parsing and typechecking of the PVS source was begun, the lower-
level portions needed to be provided. For this reason, basic types tend to be done early
during speci�cation development and many of the de�nitions \meet in the middle" as
both the upper and lower layers of the hierarchy are pushed toward completion. The
following paragraphs point out some highlights of a subset of the theories, serving to
annotate the PVS speci�cations of Section C.3.3.

C.3.2.1 Basic Types

A few common type de�nitions are provided for use elsewhere within the speci�cation.
Sensor readings are all modeled as real numbers. Several enumeration types are intro-
duced to model translation and rotation commands. The six dof command type is a
record that integrates all six axis commands. A few constants are also included to give
names and values to null commands.

NASA-GB-001-97 197

C.3.2.2 Hand Controller Module

The HCM switches are modeled in this theory as is the hand grip mechanism. The
derivation of a six degree-of-freedom command from the four-axis hand controller based
on current mode is de�ned here. Basic types for the LEDs and character display are
included as well. A display bu�er is modeled as an array of character display values.
A bu�er pointer selects which element is currently being displayed. The pointer is
updated when the previous state of the display proceed switch is neutral and the switch
makes a transition in the up or down direction.

C.3.2.3 Propulsion Module

Thruster names are introduced via an enumeration type for the full complement of 24
thrusters. A more elaborate type called thruster desig represents thruster designa-
tions in terms of their three component parts. This makes use of an advanced feature of
the PVS language known as dependent types, where the type of later components of a
record or tuple may depend on the value of earlier components. A mapping from names
to designations is also provided. Finally, lists of thrusters are used to model actuator
commands, where those thrusters to be �red are included in the list. Lists in PVS are
analogous to the concept of lists in the Lisp programming language and its descendants.

C.3.2.4 Automatic Attitude Hold

A moderately complex part of the SAFER model revolves around the attitude hold
feature. The hand grip pushbutton for engaging AAH mode is scanned to detect tran-
sitions that should be acted upon. The single-click, double-click engagement protocol is
represented by the state diagram shown in Figure C.8, where the arcs are labeled with
the switch values sensed in the current frame. The type AAH engage state denotes the
states in this diagram, while the function button transition models the diagram's
transitions.

Several state components are modeled for managing AAH and its special require-
ments. The actual control law is not de�ned, but unspeci�ed functions are provided to
indicate where such processing �ts in. The overall AAH transition function is de�ned
by the PVS function AAH transition, taking into account the conditions for activating
and deactivating AAH on each axis, as well as the timeouts necessary for detecting
double clicks of the AAH pushbutton.

C.3.2.5 Thruster Selection

Thruster selection takes place in two major steps: forming an integrated six degree-of-
freedom command from the HCM command and AAH command, and then taking the
integrated command and chosing individual thrusters to �re. Three functions take care
of the �rst part by capturing the logic for prioritizing translation commands, merging

198 Appendix C

rotation commands, and forming the correct aggregate command under the various con-
ditions. Two functions called BF thrusters and LRUD thrusters formalize the thruster
selection logic in Tables C.2 and C.3. These functions are de�ned using triply nested
tables to avoid problems with cumbersome TCCs (type correctness conditions). A more
readable form of the tables using triples of the axis commands resulted in large and in-
tractable TCCs so the less pleasing form was necessary. This is an example of the trade-
o�s that must be made occasionally when working with formal speci�cations. Finally,
the theory concludes with the functions selected thrusters and selected actuators

that integrate the results of the preceding functions to produce the �nal list of chosen
thrusters.

C.3.2.6 Avionics Model

This top-level theory pulls together all the separate portions of the formalization. The
overall state machine model for the SAFER controller is captured in the form of type
de�nitions for the inputs, outputs, and state values, as well as the main state transition
function called SAFER control. Note the use of a LET expression to de�ne most of the
separate pieces that are merged to form the �nal outputs and next-state components.
An initial state constant is also provided in this theory.

C.3.3 Full Text of PVS Theories

%%

%%

%% The following PVS theories comprise a formal model of a subset

%% of the control system functional requirements for an EVA

%% propulsion system. This example is heavily based on NASA's

%% Simplified Aid for EVA Rescue (SAFER), developed at the Johnson

%% Space Center (JSC). For pedagogical reasons, the requirements

%% deviate somewhat from the actual SAFER system. Furthermore, the

%% SAFER system is still under development. As a result, the model

%% that follows does not necessarily reflect the actual SAFER

%% requirements as maintained by JSC.

%%

%% References:

%% 1. Simplified Aid for EVA Rescue (SAFER) Operations Manual.

%% NASA report JSC-26283, Sept. 1994.

%% 2. Simplified Aid for EVA Rescue (SAFER) Flight Test Project,

%% Flight Test Article Prime Item Development Specification.

%% NASA report JSC-25552A, July 1994.

%%

%%

NASA-GB-001-97 199

avionics_types: THEORY

BEGIN

pressure: TYPE = real

temperature: TYPE = real

voltage: TYPE = real

angular_rate: TYPE = real

linear_accel: TYPE = real

axis_command: TYPE = {NEG, ZERO, POS}

tran_axis: TYPE = {X, Y, Z}

rot_axis: TYPE = {roll, pitch, yaw}

tran_command: TYPE = [tran_axis -> axis_command]

rot_command: TYPE = [rot_axis -> axis_command]

rot_predicate: TYPE = [rot_axis -> bool]

six_dof_command: TYPE = [# tran: tran_command, rot: rot_command #]

null_tran_command: tran_command = (LAMBDA (a: tran_axis): ZERO)

null_rot_command: rot_command = (LAMBDA (a: rot_axis): ZERO)

null_six_dof: six_dof_command = (# tran := null_tran_command,

rot := null_rot_command #)

END avionics_types

%%

%%

%% The hand controller module (HCM) consists of a set of switches,

%% a hand grip controller with integral pushbutton, and a set of

%% crew displays. A six degree-of-freedom command is derived from

%% four-axis hand grip inputs and the control mode switch position.

%% It is assumed that switch debouncing is provided by a low-level

%% hardware or software mechanism so that switch transitions in this

%% model may be considered clean.

%%

%%

200 Appendix C

hand_controller_module: THEORY

BEGIN

IMPORTING avionics_types

power_test_switch: TYPE = {OFF, ON, TST}

display_proceed_switch: TYPE = {PREV, CURR, NEXT}

control_mode_switch: TYPE = {ROT, TRAN}

AAH_control_button: TYPE = {button_up, button_down}

HCM_switch_positions: TYPE = [#

PWR: power_test_switch,

DISP: display_proceed_switch,

MODE: control_mode_switch,

AAH: AAH_control_button

#]

%% The hand grip provides four axes for command input, which are

%% multiplexed by the control mode switch into the required six axes.

hand_grip_position: TYPE =

[# vert, horiz, trans, twist: axis_command #]

grip_command((grip: hand_grip_position),

(mode: control_mode_switch)): six_dof_command =

(# tran := null_tran_command WITH [

X := horiz(grip),

Y := IF mode = TRAN THEN trans(grip) ELSE ZERO ENDIF,

Z := IF mode = TRAN THEN vert(grip) ELSE ZERO ENDIF],

rot := null_rot_command WITH [

roll := IF mode = ROT THEN vert(grip) ELSE ZERO ENDIF,

pitch := twist(grip),

yaw := IF mode = ROT THEN trans(grip) ELSE ZERO ENDIF]

#)

%% The HCM display mechanism is centered around a 16-character LCD.

NASA-GB-001-97 201

char_display_index: TYPE = {n: nat | 1 <= n & n <= 16} CONTAINING 1

character_display: TYPE = [char_display_index -> character]

blank_char_display: character_display =

(LAMBDA (i: char_display_index): char(32))

HCM_display_set: TYPE = [#

LCD: character_display,

THR: bool,

AAH: bool

#]

%% Multiline messages are stored in a buffer and viewed one line

%% at a time.

HCM_buffer_len: above[0] %% Any integer > 0

HCM_buffer_index: TYPE = {n: nat | 1 <= n & n <= HCM_buffer_len}

CONTAINING 1

HCM_display_buffer: TYPE = [HCM_buffer_index -> character_display]

blank_display_buffer: HCM_display_buffer =

(LAMBDA (i: HCM_buffer_index): blank_char_display)

%% The current pointer in the display state identifies which line to

%% display, and the pointer can be moved up and down using the display

%% proceed switch.

HCM_display_state: TYPE = [#

switch: display_proceed_switch,

buffer: HCM_display_buffer,

current: HCM_buffer_index

#]

next_disp_pointer((new_sw: display_proceed_switch),

(display: HCM_display_state)): HCM_buffer_index =

IF switch(display) = CURR AND new_sw /= CURR

THEN IF new_sw = PREV

THEN max(1, current(display) - 1)

202 Appendix C

ELSE min(HCM_buffer_len, current(display) + 1)

ENDIF

ELSE current(display)

ENDIF

END hand_controller_module

%%

%%

%% The propulsion module provides a number of sensors and a set of

%% actuators to control the 24 thrusters, which are grouped into

%% four clusters or quadrants.

%%

%%

propulsion_module: THEORY

BEGIN

IMPORTING avionics_types

propulsion_sensors: TYPE = [#

tank_press: pressure,

tank_temp: temperature,

reg_press: pressure,

reg_temp: temperature,

thruster_on: bool

#]

thruster_name: TYPE =

{B1, B2, B3, B4, F1, F2, F3, F4,

L1R, L1F, R2R, R2F, L3R, L3F, R4R, R4F,

D1R, D1F, D2R, D2F, U3R, U3F, U4R, U4F}

%% Thruster designators are triples of the form

%% (thrust direction, cluster no., forward/rear location)

%% Not all combinations of these values are possible so a dependent

%% type is used to represent the constraints.

thruster_direction: TYPE = {UP, DN, BK, FD, LT, RT}

thruster_quadrant: TYPE = {n: nat | 1 <= n & n <= 4} CONTAINING 1

thruster_location: TYPE = {FW, RR} % forward, rear

NASA-GB-001-97 203

valid_quadrant((d: thruster_direction),

(q: thruster_quadrant)): bool =

COND d = UP -> q = 3 OR q = 4,

d = DN -> q = 1 OR q = 2,

d = LT -> q = 1 OR q = 3,

d = RT -> q = 2 OR q = 4,

ELSE -> true

ENDCOND

% Thrusters B1-B4 and F1-F4 are not normally written with a

% forward/rear location tag, but they are supplied below to fit

% the type declaration scheme.

thruster_desig: TYPE = [

dir: thruster_direction,

{quad: thruster_quadrant | valid_quadrant(dir, quad)},

{loc: thruster_location |

(dir = BK => loc = FW) AND (dir = FD => loc = RR)}

]

thruster_map(thruster: thruster_name): thruster_desig =

TABLE thruster

%--------------------%

| B1 | (BK, 1, FW) ||

| B2 | (BK, 2, FW) ||

| B3 | (BK, 3, FW) ||

| B4 | (BK, 4, FW) ||

%--------------------%

| F1 | (FD, 1, RR) ||

| F2 | (FD, 2, RR) ||

| F3 | (FD, 3, RR) ||

| F4 | (FD, 4, RR) ||

%--------------------%

| L1R | (LT, 1, RR) ||

| L1F | (LT, 1, FW) ||

| R2R | (RT, 2, RR) ||

| R2F | (RT, 2, FW) ||

%--------------------%

| L3R | (LT, 3, RR) ||

| L3F | (LT, 3, FW) ||

204 Appendix C

| R4R | (RT, 4, RR) ||

| R4F | (RT, 4, FW) ||

%--------------------%

| D1R | (DN, 1, RR) ||

| D1F | (DN, 1, FW) ||

| D2R | (DN, 2, RR) ||

| D2F | (DN, 2, FW) ||

%--------------------%

| U3R | (UP, 3, RR) ||

| U3F | (UP, 3, FW) ||

| U4R | (UP, 4, RR) ||

| U4F | (UP, 4, FW) ||

%--------------------%

ENDTABLE

%% Actuator commands are modeled as a list of thrusters to be fired.

thruster_list: TYPE = list[thruster_name]

actuator_commands: TYPE = thruster_list

null_actuation: actuator_commands = (: :)

END propulsion_module

%%

%%

%% Sensing for angular rotation rates and linear acceleration is

%% provided by the inertial reference unit (IRU).

%%

%%

inertial_reference_unit: THEORY

BEGIN

IMPORTING avionics_types

inertial_ref_sensors: TYPE = [#

roll_rate: angular_rate,

pitch_rate: angular_rate,

NASA-GB-001-97 205

yaw_rate: angular_rate,

roll_temp: temperature,

pitch_temp: temperature,

yaw_temp: temperature,

X_accel: linear_accel,

Y_accel: linear_accel,

Z_accel: linear_accel

#]

END inertial_reference_unit

%%

%%

%% An automatic attitude hold (AAH) capability may be invoked to

%% maintain near-zero rotation rates. A pushbutton mounted on the

%% hand grip engages AAH with a single button click, and disengages

%% with a double click. Internal state information is maintained

%% to observe the button pushing protocol, keep track of status for

%% each axis, and implement the attitude hold control law.

%%

%%

automatic_attitude_hold: THEORY

BEGIN

IMPORTING avionics_types, hand_controller_module,

inertial_reference_unit, propulsion_module

click_timeout: nat = 100 %% At most 0.5 second between button

%% pushes for a double click.

AAH_engage_state: TYPE = {AAH_off, AAH_started, AAH_on,

pressed_once, AAH_closing, pressed_twice}

AAH_control_law_state: TYPE+

AAH_state: TYPE = [# active_axes: rot_predicate,

ignore_HCM: rot_predicate,

toggle: AAH_engage_state,

timeout: nat,

control_vars: AAH_control_law_state #]

206 Appendix C

all_axes_off(active: rot_predicate): bool =

(FORALL (a: rot_axis): NOT active(a))

%% On each frame, the sampled value of the AAH engage button is

%% checked to determine whether AAH is engaging or disengaging.

%% This function implements the AAH engagement state diagram.

button_transition((state: AAH_engage_state),

(button: AAH_control_button),

(active: rot_predicate),

(clock: nat),

(timeout: nat)): AAH_engage_state =

TABLE

state , button

%---------------------------------%

|[button_down | button_up]|

%--%

| AAH_off | AAH_started | AAH_off ||

| AAH_started | AAH_started | AAH_on ||

| AAH_on | pressed_once | state_A ||

| pressed_once | pressed_once | AAH_closing ||

| AAH_closing | pressed_twice | state_B ||

| pressed_twice | pressed_twice | AAH_off ||

%--%

ENDTABLE

WHERE state_A =

IF all_axes_off(active) THEN AAH_off ELSE AAH_on ENDIF,

state_B =

IF all_axes_off(active) THEN AAH_off

ELSIF clock > timeout THEN AAH_on ELSE AAH_closing

ENDIF

%% The control law used to implement attitude hold is represented by two

%% functions that map sensor inputs and control law state into next state

%% and output values.

AAH_control_law((IRU_sensors: inertial_ref_sensors),

(prop_sensors: propulsion_sensors),

(AAH_state: AAH_state)): AAH_control_law_state

NASA-GB-001-97 207

AAH_control_out((IRU_sensors: inertial_ref_sensors),

(prop_sensors: propulsion_sensors),

(AAH_state: AAH_state)): rot_command

initial_control_law_state: AAH_control_law_state

%% AAH state information is updated in every frame. Key transitions in

%% the engage-state diagram cause various state variables to be set.

AAH_transition((IRU_sensors: inertial_ref_sensors),

(prop_sensors: propulsion_sensors),

(button_pos: AAH_control_button),

(HCM_cmd: six_dof_command),

(AAH_state: AAH_state),

(clock: nat)): AAH_state =

LET engage = button_transition(toggle(AAH_state),

button_pos,

active_axes(AAH_state),

clock,

timeout(AAH_state)),

starting = (toggle(AAH_state) = AAH_off AND engage = AAH_started)

IN (# active_axes := (LAMBDA (a: rot_axis):

starting OR

(engage /= AAH_off AND

active_axes(AAH_state)(a) AND

(rot(HCM_cmd)(a) = ZERO OR

ignore_HCM(AAH_state)(a)))),

ignore_HCM := (LAMBDA (a: rot_axis):

IF starting

THEN rot(HCM_cmd)(a) /= ZERO

ELSE ignore_HCM(AAH_state)(a)

ENDIF),

toggle := engage,

timeout := IF toggle(AAH_state) = AAH_on AND

engage = pressed_once

THEN clock + click_timeout

ELSE timeout(AAH_state)

ENDIF,

control_vars := AAH_control_law(IRU_sensors,

prop_sensors,

AAH_state)

208 Appendix C

#)

END automatic_attitude_hold

%%

%%

%% Thruster selection logic is formalized in the following theory.

%% Hand controller and AAH commands are merged together in accordance

%% with the various priority rules, yielding a six degree-of-freedom

%% command. Thruster selection tables are consulted to convert the

%% translation and rotation components to individual actuator

%% commands for opening suitable thruster valves.

%%

%%

thruster_selection: THEORY

BEGIN

IMPORTING avionics_types, propulsion_module, automatic_attitude_hold

rot_cmds_present(cmd: rot_command): bool =

(EXISTS (a: rot_axis): cmd(a) /= ZERO)

%% At most one translation is allowed, in priority order X, Y, Z.

prioritized_tran_cmd(tran: tran_command): tran_command =

IF tran(X) /= ZERO

THEN null_tran_command WITH [X := tran(X)]

ELSIF tran(Y) /= ZERO

THEN null_tran_command WITH [Y := tran(Y)]

ELSIF tran(Z) /= ZERO

THEN null_tran_command WITH [Z := tran(Z)]

ELSE null_tran_command

ENDIF

%% Hand grip rotation commands take precedence over AAH commands

%% unless inhibited at the start of AAH.

combined_rot_cmds((HCM_rot: rot_command),

(AAH: rot_command),

(ignore_HCM: rot_predicate)): rot_command =

(LAMBDA (a: rot_axis):

NASA-GB-001-97 209

IF HCM_rot(a) = ZERO OR ignore_HCM(a)

THEN AAH(a)

ELSE HCM_rot(a)

ENDIF)

%% Hand grip rotations suppress translations but AAH rotations do not.

integrated_commands((HCM: six_dof_command),

(AAH: rot_command),

(state: AAH_state)): six_dof_command =

IF all_axes_off(active_axes(state))

THEN IF rot_cmds_present(rot(HCM))

THEN (# tran := null_tran_command,

rot := rot(HCM) #)

ELSE (# tran := prioritized_tran_cmd(tran(HCM)),

rot := null_rot_command #)

ENDIF

ELSE IF rot_cmds_present(rot(HCM))

THEN (# tran := null_tran_command,

rot := combined_rot_cmds(rot(HCM), AAH,

ignore_HCM(state)) #)

ELSE (# tran := prioritized_tran_cmd(tran(HCM)),

rot := AAH #)

ENDIF

ENDIF

%% Selection of back and forward thrusters results in a pair of

%% thrusters lists, the first of which gives mandatory thrusters

%% and the second gives optional thrusters. This function represents

%% the selection table for X, pitch, and yaw commands.

thruster_list_pair: TYPE = [thruster_list, thruster_list]

BF_thrusters((A, B, C: axis_command)): thruster_list_pair =

TABLE A

| NEG | TABLE B

| NEG | TABLE C

%--------------------------------------%

| NEG | ((: B4 :), (: B2, B3 :)) ||

| ZERO | ((: B3, B4 :), (: :)) ||

210 Appendix C

| POS | ((: B3 :), (: B1, B4 :)) ||

%--------------------------------------%

ENDTABLE ||

| ZERO | TABLE C

%--------------------------------------%

| NEG | ((: B2, B4 :), (: :)) ||

| ZERO | ((: B1, B4 :), (: B2, B3 :)) ||

| POS | ((: B1, B3 :), (: :)) ||

%--------------------------------------%

ENDTABLE ||

| POS | TABLE C

%--------------------------------------%

| NEG | ((: B2 :), (: B1, B4 :)) ||

| ZERO | ((: B1, B2 :), (: :)) ||

| POS | ((: B1 :), (: B2, B3 :)) ||

%--------------------------------------%

ENDTABLE ||

ENDTABLE ||

| ZERO | TABLE B

| NEG | TABLE C

%--------------------------------------%

| NEG | ((: B4, F1 :), (: :)) ||

| ZERO | ((: B4, F2 :), (: :)) ||

| POS | ((: B3, F2 :), (: :)) ||

%--------------------------------------%

ENDTABLE ||

| ZERO | TABLE C

%--------------------------------------%

| NEG | ((: B2, F1 :), (: :)) ||

| ZERO | ((: :), (: :)) ||

| POS | ((: B3, F4 :), (: :)) ||

%--------------------------------------%

ENDTABLE ||

| POS | TABLE C

%--------------------------------------%

| NEG | ((: B2, F3 :), (: :)) ||

| ZERO | ((: B1, F3 :), (: :)) ||

| POS | ((: B1, F4 :), (: :)) ||

%--------------------------------------%

ENDTABLE ||

ENDTABLE ||

| POS | TABLE B

NASA-GB-001-97 211

| NEG | TABLE C

%--------------------------------------%

| NEG | ((: F1 :), (: F2, F3 :)) ||

| ZERO | ((: F1, F2 :), (: :)) ||

| POS | ((: F2 :), (: F1, F4 :)) ||

%--------------------------------------%

ENDTABLE ||

| ZERO | TABLE C

%--------------------------------------%

| NEG | ((: F1, F3 :), (: :)) ||

| ZERO | ((: F2, F3 :), (: F1, F4 :)) ||

| POS | ((: F2, F4 :), (: :)) ||

%--------------------------------------%

ENDTABLE ||

| POS | TABLE C

%--------------------------------------%

| NEG | ((: F3 :), (: F1, F4 :)) ||

| ZERO | ((: F3, F4 :), (: :)) ||

| POS | ((: F4 :), (: F2, F3 :)) ||

%--------------------------------------%

ENDTABLE ||

ENDTABLE ||

ENDTABLE

%% Selection of left, right, up, and down thrusters resulting from

%% Y, Z, and roll commands.

LRUD_thrusters((A, B, C: axis_command)): thruster_list_pair =

TABLE A

| NEG | TABLE B

| NEG | TABLE C

%--%

| NEG | ((: :), (: :)) ||

| ZERO | ((: :), (: :)) ||

| POS | ((: :), (: :)) ||

%--%

ENDTABLE ||

| ZERO | TABLE C

%--%

| NEG | ((: L1R :), (: L1F, L3F :)) ||

| ZERO | ((: L1R, L3R :), (: L1F, L3F :)) ||

212 Appendix C

| POS | ((: L3R :), (: L1F, L3F :)) ||

%--%

ENDTABLE ||

| POS | TABLE C

%--%

| NEG | ((: :), (: :)) ||

| ZERO | ((: :), (: :)) ||

| POS | ((: :), (: :)) ||

%--%

ENDTABLE ||

ENDTABLE ||

| ZERO | TABLE B

| NEG | TABLE C

%--%

| NEG | ((: U3R :), (: U3F, U4F :)) ||

| ZERO | ((: U3R, U4R :), (: U3F, U4F :)) ||

| POS | ((: U4R :), (: U3F, U4F :)) ||

%--%

ENDTABLE ||

| ZERO | TABLE C

%--%

| NEG | ((: L1R, R4R :), (: :)) ||

| ZERO | ((: :), (: :)) ||

| POS | ((: R2R, L3R :), (: :)) ||

%--%

ENDTABLE ||

| POS | TABLE C

%--%

| NEG | ((: D2R :), (: D1F, D2F :)) ||

| ZERO | ((: D1R, D2R :), (: D1F, D2F :)) ||

| POS | ((: D1R :), (: D1F, D2F :)) ||

%--%

ENDTABLE ||

ENDTABLE ||

| POS | TABLE B

| NEG | TABLE C

%--%

| NEG | ((: :), (: :)) ||

| ZERO | ((: :), (: :)) ||

| POS | ((: :), (: :)) ||

%--%

ENDTABLE ||

NASA-GB-001-97 213

| ZERO | TABLE C

%--%

| NEG | ((: R4R :), (: R2F, R4F :)) ||

| ZERO | ((: R2R, R4R :), (: R2F, R4F :)) ||

| POS | ((: R2R :), (: R2F, R4F :)) ||

%--%

ENDTABLE ||

| POS | TABLE C

%--%

| NEG | ((: :), (: :)) ||

| ZERO | ((: :), (: :)) ||

| POS | ((: :), (: :)) ||

%--%

ENDTABLE ||

ENDTABLE ||

ENDTABLE

%% An integrated six degree-of-freedom command is mapped into a vector

%% of actuator commands. Selection tables provide lists of thrusters

%% and both mandatory and optional thrusters are included as appropriate.

selected_thrusters(cmd: six_dof_command): thruster_list =

LET (BF_mandatory, BF_optional) =

BF_thrusters(tran(cmd)(X), rot(cmd)(pitch), rot(cmd)(yaw)),

(LRUD_mandatory, LRUD_optional) =

LRUD_thrusters(tran(cmd)(Y), tran(cmd)(Z), rot(cmd)(roll)),

BF_thr = append(IF rot(cmd)(roll) = ZERO

THEN BF_optional

ELSE (: :)

ENDIF,

BF_mandatory),

LRUD_thr = append(IF rot(cmd)(pitch) = ZERO AND

rot(cmd)(yaw) = ZERO

THEN LRUD_optional

ELSE (: :)

ENDIF,

LRUD_mandatory)

IN append(BF_thr, LRUD_thr)

selected_actuators((HCM: six_dof_command),

214 Appendix C

(AAH: rot_command),

(state: AAH_state)): actuator_commands =

selected_thrusters(integrated_commands(HCM, AAH, state))

END thruster_selection

%%

%%

%% Several sensors are provided by the power supply to support

%% the fault monitoring functions.

%%

%%

power_supply: THEORY

BEGIN

IMPORTING avionics_types

power_supply_sensors: TYPE = [#

elect_batt: voltage,

valve_batt: voltage,

batt_temp: temperature

#]

END power_supply

%%

%%

%% A data recorder module is provided to record SAFER performance

%% data for later analysis.

%%

%%

data_recorder: THEORY

BEGIN

IMPORTING avionics_types, propulsion_module,

inertial_reference_unit, power_supply,

automatic_attitude_hold

data_recorder_packet: TYPE+

NASA-GB-001-97 215

data_packet((prop_sensors: propulsion_sensors),

(IRU_sensors: inertial_ref_sensors),

(power_sensors: power_supply_sensors),

(AAH_state: AAH_state),

(thrusters: actuator_commands)): data_recorder_packet

END data_recorder

%%

%%

%% Continuous fault monitoring and consumables monitoring is

%% provided by the self-test function.

%%

%%

self_test: THEORY

BEGIN

IMPORTING avionics_types, propulsion_module,

inertial_reference_unit, power_supply,

automatic_attitude_hold

self_test_state: TYPE+

initial_self_test_state: self_test_state

%% The monitoring function is provided by the following.

SAFER_monitoring((prop_sensors: propulsion_sensors),

(IRU_sensors: inertial_ref_sensors),

(power_sensors: power_supply_sensors),

(self_test: self_test_state)): self_test_state

END self_test

%%

%%

%% Data from the various SAFER modules is collected for crew display

%% through the HCM character display.

%%

%%

216 Appendix C

HCM_display: THEORY

BEGIN

IMPORTING avionics_types, hand_controller_module, self_test

%% The HCM display buffer is constructed and updated by the following.

display_buffer((self_test: self_test_state),

(HCM_display: HCM_display_buffer)): HCM_display_buffer

initial_display_buffer: HCM_display_buffer

END HCM_display

%%

%%

%% The top level state machine model of the controller is presented

%% in the following theory. A transition function describes the

%% effects of the controller's actions during a single frame. A

%% 5 msec frame period is assumed (200 Hz sampling rate).

%%

%%

avionics_model: THEORY

BEGIN

IMPORTING avionics_types, hand_controller_module,

propulsion_module, thruster_selection,

inertial_reference_unit, automatic_attitude_hold,

data_recorder, power_supply, self_test, HCM_display

%% Controller inputs from SAFER modules and components.

avionics_inputs: TYPE = [#

HCM_switches: HCM_switch_positions,

grip_command: hand_grip_position,

prop_sensors: propulsion_sensors,

IRU_sensors: inertial_ref_sensors,

power_sensors: power_supply_sensors

#]

NASA-GB-001-97 217

%% Controller outputs to SAFER modules and components.

avionics_outputs: TYPE = [#

HCM_displays: HCM_display_set,

prop_actuators: actuator_commands,

data_recorder: data_recorder_packet

#]

%% Internal state variables maintained by the controller.

avionics_state: TYPE = [#

msg_display: HCM_display_state,

AAH_state: AAH_state,

clock: nat,

self_test: self_test_state

#]

avionics_result: TYPE = [# output: avionics_outputs,

state: avionics_state #]

%% The top level state machine transition function represents one

%% frame of controller operation (once around the main control loop).

SAFER_control ((avionics_inputs: avionics_inputs),

(avionics_state: avionics_state)): avionics_result =

LET switches = HCM_switches(avionics_inputs),

raw_grip = grip_command(avionics_inputs),

prop_sensors = prop_sensors(avionics_inputs),

IRU_sensors = IRU_sensors(avionics_inputs),

power_sensors = power_sensors(avionics_inputs),

AAH_state = AAH_state(avionics_state),

AAH_active = NOT all_axes_off(active_axes(AAH_state)),

display = msg_display(avionics_state),

clock = clock(avionics_state),

self_test = self_test(avionics_state),

grip_cmd = grip_command(raw_grip, MODE(switches)),

AAH_cmd = AAH_control_out(IRU_sensors, prop_sensors,

218 Appendix C

AAH_state),

thrusters = selected_actuators(grip_cmd, AAH_cmd, AAH_state),

monitoring = SAFER_monitoring(prop_sensors, IRU_sensors,

power_sensors, self_test),

disp_window = buffer(display)(current(display)),

disp_buffer = display_buffer(monitoring, buffer(display)),

disp_pointer = next_disp_pointer(DISP(switches), display)

IN

(# output := (# HCM_displays :=

(# LCD := disp_window,

THR := thruster_on(prop_sensors),

AAH := AAH_active #),

prop_actuators := thrusters,

data_recorder :=

data_packet(prop_sensors, IRU_sensors,

power_sensors, AAH_state,

thrusters)

#),

state := (# msg_display :=

(# switch := DISP(switches),

buffer := disp_buffer,

current := disp_pointer #),

AAH_state :=

AAH_transition(IRU_sensors, prop_sensors,

AAH(switches), grip_cmd,

AAH_state, clock),

clock := 1 + clock,

self_test := monitoring

#)

#)

%% The controller is assumed to be powered up into the following

%% initial state.

initial_avionics_state: avionics_state =

(# msg_display := (# switch := CURR,

buffer := initial_display_buffer,

current := 1

NASA-GB-001-97 219

#),

AAH_state := (# active_axes := (LAMBDA (a: rot_axis): false),

ignore_HCM := (LAMBDA (a: rot_axis): false),

toggle := AAH_off,

timeout := 0,

control_vars := initial_control_law_state

#),

clock := 0,

self_test := initial_self_test_state

#)

END avionics_model

C.4 Analysis of SAFER

Having produced a formalized version of the SAFER requirements, several types of
rigorous analysis are possible. Precisely stated requirements models have consequences
that can themselves be precisely stated. By expressing various properties of the system
or selected subsystem behavior, it is possible to analyze requirements, in a limited way,
for well-formedness and compliance with desired characteristics. Once expressed in this
manner, it is further possible to formally prove that the properties follow from the
de�nitions given in the requirements model.

C.4.1 Formulating System Properties

From a basic model of the SAFER controller, there are many possible aspects of system
behavior one might wish to investigate or verify. Some aspects might result from higher-
level requirements or desired system characteristics. Examples of such properties are as
follows:

� When AAH is inactive and no hand grip commands are present there should be
no thruster �rings.

� SAFER should never �re more than four thrusters simultaneously.

� No two selected thrusters should oppose each other, that is, have cancelling thrust
with respect to the center of mass.

� Once AAH is turned o� for a rotational axis it remains o� until a new AAH cycle
is initiated.

Properties such as these identify behavior that designers expect or require the system
to have if it is to satisfy their expectations. These properties must logically follow

220 Appendix C

as consequences of the de�nitions contained in the system model. Thus, if a mistake
was made in deriving the requirements or formalizing them, attempts to express and
prove these properties will help detect the error. This approach then constitutes a
rigorous method of analyzing requirements. It becomes possible to de�nitively answer
questions about system behavior, reducing the chances of error from miscalculation,
interpretation, or engineering judgment.

C.4.1.1 Formalization of the Maximum Thruster Property

To illustrate the process of formalizing system properties, it is instructive to take one
of the suggested properties mentioned above and capture it formally using PVS. Let
the Maximum Thruster Property be the requirement that SAFER should never �re
more than four thrusters simultaneously. This condition was expressed as an explicit
requirement in Section C.2. It can be shown that it follows as a direct consequence of
the more detailed functional requirements.

Thruster selection is a function of the hand grip command and any AAH-generated
commands. Tables C.2 and C.3 are used to choose appropriate thrusters based on which
commands appear. Examining the tables, it can be seen that as many as four thrusters
can be selected from each, resulting, at �rst glance, in as many as eight thrusters chosen
from both. Clearly, some other conditions are needed to reduce the possibilities. Several
restrictive conditions make some command combinations invalid. In addition, the table
entries themselves are interrelated in ways that limit the thruster count for multiple
commands. Taking these restrictions and the table structure into account, the four-
thruster maximum can be derived.

Expressing the Maximum Thruster Property in PVS is straightforward:

FORALL (a_in: avionics_inputs), (a_st: avionics_state):

length(prop_actuators(output(SAFER_control(a_in, a_st)))) <= 4

This formula asserts that for any input and state values, the outputs produced by the
SAFER controller, which include the list of thrusters to �re in the current frame, obey
the maximum thruster requirement. This is a strong statement because it applies to
any output that can be generated by the model.

Section C.4.1.2 presents a PVS theory containing the desired property and support-
ing lemmas needed to prove it. The property appears at the end of the theory, expressed
as the PVS theorem called max thrusters. All the preceding lemmas in this theory are
used to construct the proof of max thrusters. Some lemmas were drafted speci�cally
to decompose the overall proof into manageable pieces, thus representing intermediate
steps. Other lemmas, however, express various facts about the problem domain that
are useful in their own right and might �nd application in other proof e�orts.

C.4.1.2 PVS Theory for Maximum Thruster Property

NASA-GB-001-97 221

%%

%%

%% Some properties of the SAFER controller are formalized in the

%% following PVS theory. The top level theorem, max_thrusters,

%% asserts that for any input and current state values, the SAFER

%% controller will issue no more four thruster firing commands.

%% The theorems and lemmas stated below have all been proved using

%% the PVS interactive proof checker.

%%

%%

SAFER_properties: THEORY

BEGIN

IMPORTING avionics_model

A,B,C: VAR axis_command

tr: VAR tran_command

HCM,cmd: VAR six_dof_command

AAH: VAR rot_command

state: VAR AAH_state

thr,U,V: VAR thruster_list

act: VAR actuator_commands

BF,LRUD: VAR thruster_list_pair

%% A simple list property is needed to support thruster selection proofs.

length_append: LEMMA

length(append(U, V)) = length(U) + length(V)

%% Only one translation command can be accepted for thruster selection.

only_one_tran(tr): bool =

(tr(X) /= ZERO IMPLIES tr(Y) = ZERO AND tr(Z) = ZERO)

AND (tr(Y) /= ZERO IMPLIES tr(Z) = ZERO)

only_one_tran_pri: LEMMA

only_one_tran(prioritized_tran_cmd(tr))

only_one_tran_int: LEMMA

222 Appendix C

only_one_tran(tran(integrated_commands(HCM, AAH, state)))

%% All categories of selected thrusters (BF vs. LRUD and mandatory

%% vs. optional) are bounded in size by two, which follows directly

%% from inspection of the tables.

max_thrusters_BF: LEMMA

length(proj_1(BF_thrusters(A, B, C))) <= 2 AND

length(proj_2(BF_thrusters(A, B, C))) <= 2

max_thrusters_LRUD: LEMMA

length(proj_1(LRUD_thrusters(A, B, C))) <= 2 AND

length(proj_2(LRUD_thrusters(A, B, C))) <= 2

%% Absence of translation commands implies no optional thrusters

%% will be selected.

no_opt_thr_BF: LEMMA

tr(X) = ZERO IMPLIES length(proj_2(BF_thrusters(tr(X), B, C))) = 0

no_opt_thr_LRUD: LEMMA

tr(Y) = ZERO AND tr(Z) = ZERO IMPLIES

length(proj_2(LRUD_thrusters(tr(Y), tr(Z), C))) = 0

%% Top level theorems establishing bounds on number of selected thrusters:

max_thrusters_sel: LEMMA

only_one_tran(tran(cmd)) IMPLIES

length(selected_thrusters(cmd)) <= 4

max_thrusters: THEOREM

FORALL (a_in: avionics_inputs), (a_st: avionics_state):

length(prop_actuators(output(SAFER_control(a_in, a_st)))) <= 4

END SAFER_properties

C.4.2 Proving System Properties

Merely expressing anticipated facts about a system model may be su�cient to
ush out
errors or lead to the discovery of other noteworthy issues. To obtain further bene�t

NASA-GB-001-97 223

from the formalization, a proof may be performed to make a highly convincing case
for the absence of undesirable system behavior. While informal proofs could su�ce
in many cases, fully formal proofs with mechanical assistance o�er the highest degree
of assurance. Carrying out proofs within a system such as PVS can yield very high
con�dence in any results established, subject to the assumptions made about the system
environment during the modeling e�ort.

C.4.2.1 Proof Sketch of the Maximum Thruster Property

The argument for why four thrusters is the maximum is as follows. In both of the
thruster selection tables, there can be at most two mandatory thrusters and at most two
optional thrusters selected. Consider whether there is a translation command present
for the X axis.

� Case 1: No X command present. Inspection of Table C.2 shows that there
will be no optional thrusters selected in this case. Next consider whether there is
a pitch or yaw command present.

{ Case 1.1: No pitch or yaw commands. Inspection of Table C.2 shows
that no thrusters at all are selected in this case. At most four can come from
the other table. Hence, the bound holds.

{ Case 1.2: Pitch or yaw command present. Table C.3 shows that no op-
tional thrusters are chosen from this table. Hence only mandatory thrusters
from each table are chosen, which number at most four.

� Case 2: X command present. Because only one translation command is
allowed, it follows that no Y or Z command can appear. This, in turn, implies
that no optional thrusters are chosen from Table C.3. Now consider whether there
is a roll command.

{ Case 2.1: No roll command. Without a roll command, no thrusters at
all result from Table C.3. Thus the bound holds.

{ Case 2.2: Roll command present. A roll command implies that Ta-
ble C.2 yields no optional thrusters. This leaves only mandatory thrusters
from each table, and the bound of four thrusters is upheld.

The foregoing proof sketch is the case analysis used to tackle the formal proof carried
out using PVS.

In the theory SAFER properties from Section C.4.1.2, max thrusters is the
top level theorem whose proof is based on the lemmas max thrusters sel and
only one tran int. Each of these lemmas is, in turn, proved in terms of other lemmas
from this theory. max thrusters sel had the most complex proof of the group; its
proof involved the case analysis outlined above.

224 Appendix C

Section C.4.2.2 shows a transcript from the proof of theorem max thrusters. This
proof contained only �ve steps, each of which requires the user to supply a prover
command. The notation of PVS proofs is based on a sequent representation. A sequent
is a stylized way of normalizing a logical formula that has a convenient structure with
useful symmetries. In a sequent, a (numbered) list of antecedent formulas is meant to
imply a (numbered) list of consequent formulas:

[-2] <antecedent 2>

[-1] <antecedent 1>

|-------

[1] <consequent 1>

[2] <consequent 2>

The antecedents are considered to form a conjunction and the consequents form a dis-
junction. Every user-supplied prover command or inference rule causes one or more new
sequents to be generated that moves the proof closer to completion.

In the proof of max thrusters, the �ve steps are as follows:

1. Rule: (skosimp*). This rule merely eliminates the outer universal quanti�ers
(from the FORALL expression) and simpli�es the result. This is a commonly used
command at the start of many proofs.

2. Rule: (expand "SAFER control"). The cited function is expanded in place by
this rule, with all actual arguments propagated to their proper place.

3. Rule: (expand "selected actuators"). Another case of function expansion is
used here.

4. Rule: (use "only one tran int"). One of the lemmas from the containing the-
ory is imported for later use. The lemma's variables are automatically instantiated
with terms that appear to be useful, which is easy to do in this case.

5. Rule: (forward-chain "max thrusters sel"). Forward chaining is the appli-
cation of a lemma of the form P => Q when formula P appears in the antecedent
list. In this case, the whole sequent is actually an instance of the cited lemma, so
invoking the forward chain rule �nishes o� the proof immediately.

Proofs of the remaining lemmas were all carried out within PVS in a similar fashion.
Most required only a few steps. The exception was max thrusters sel, which required
a more elaborate proof because of the case analysis mentioned above. This proof con-
tained around 40 steps, resulting from several case splits and the subsequent equality
substitutions to use the facts generated by the case splitting.

NASA-GB-001-97 225

C.4.2.2 PVS Proof of Maximum Thruster Property

max_thrusters :

|-------

{1} FORALL (a_in: avionics_inputs), (a_st: avionics_state):

length(prop_actuators(output(SAFER_control(a_in, a_st)))) <= 4

Rule? (skosimp*)

Repeatedly Skolemizing and flattening,

this simplifies to:

max_thrusters :

|-------

{1} length(prop_actuators(output(SAFER_control(a_in!1, a_st!1)))) <= 4

Rule? (expand "SAFER_control")

Expanding the definition of SAFER_control,

this simplifies to:

max_thrusters :

|-------

{1} length(selected_actuators(grip_command(grip_command(a_in!1),

MODE

(HCM_switches(a_in!1))),

AAH_control_out(IRU_sensors(a_in!1),

prop_sensors(a_in!1),

AAH_state(a_st!1)),

AAH_state(a_st!1)))

<= 4

Rule? (expand "selected_actuators")

Expanding the definition of selected_actuators,

this simplifies to:

max_thrusters :

|-------

{1} length

(selected_thrusters

(integrated_commands(grip_command(grip_command(a_in!1),

MODE

(HCM_switches(a_in!1))),

226 Appendix C

AAH_control_out(IRU_sensors(a_in!1),

prop_sensors(a_in!1),

AAH_state(a_st!1)),

AAH_state(a_st!1))))

<= 4

Rule? (use "only_one_tran_int")

Using lemma only_one_tran_int,

this simplifies to:

max_thrusters :

{-1} only_one_tran(tran(integrated_commands(grip_command(grip_command(a_in!1),

MODE

(HCM_switches(a_in!1))),

AAH_control_out

(IRU_sensors(a_in!1),

prop_sensors(a_in!1),

AAH_state(a_st!1)),

AAH_state(a_st!1))))

|-------

[1] length

(selected_thrusters

(integrated_commands(grip_command(grip_command(a_in!1),

MODE

(HCM_switches(a_in!1))),

AAH_control_out(IRU_sensors(a_in!1),

prop_sensors(a_in!1),

AAH_state(a_st!1)),

AAH_state(a_st!1))))

<= 4

Rule? (forward-chain "max_thrusters_sel")

Forward chaining on max_thrusters_sel,

Q.E.D.

Run time = 4.03 secs.

Real time = 73.92 secs.

NASA-GB-001-97 227

Figure C.1: SAFER use by an EVA crewmember.

228 Appendix C

Figure C.2: Propulsion module structure and mechanisms.

NASA-GB-001-97 229

Figure C.3: SAFER thrusters and axes.

230 Appendix C

Figure C.4: Hand controller module.

NASA-GB-001-97 231

Figure C.5: Hand controller translational axes.

232 Appendix C

Figure C.6: Hand controller rotational axes.

NASA-GB-001-97 233

Figure C.7: SAFER system software architecture.

234 Appendix C

up

up

down

down

down

up

down

up

off

AAH

AAH
on

pressed
twice

AAH

started

down

once
pressed

AAH

up

up

down

closing

timeout

off
3 axes 3 axes

off

Figure C.8: AAH pushbutton state diagram.

